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Chapter 1

Introduction

Superconductors can be divided roughly in two classes: the high-critical temperature (Tc)
superconductors and the low-Tc superconductors. Ironically, the superconductors that
require more sophisticated cooling mechanisms such as helium liquefaction were discovered
first in 1911 [1–3], while superconductors that can be cooled simply by immersion in
liquid nitrogen were only discovered a little over 20 years ago [4]. This can be attributed
to the higher complexity of the high-Tc superconductors which can only be artificially
fabricated. The difference between high- and low temperature superconductors is not
merely restricted to a different transition temperature, however. The physical properties
of these two classes are fundamentally different. In fact, whereas the theory of low-
temperature superconductors has more or less matured since the introduction of the BCS
theory in 1957 [5], the mechanism of superconductivity in the high-Tc superconductors
has still not been unravelled.

Given the different nature of the two superconducting classes, the question arises what
would happen when these superconductors are brought into contact. It turns out that
this leads to remarkable physics, as is illustrated in figure 1.1. In figures 1.1(a) and 1.1(b)
the schematics of two rings, consisting partly of a high-Tc superconductor (shown in red)
and partly of a low-Tc superconductor (shown in blue) are depicted, where we implicitly
assume that the high-Tc superconductor has a d-wave pairing symmetry and the low-Tc

superconductor an s-wave symmetry. The contacts between these superconductors (shown
in yellow) are so-called Josephson junctions. The only difference between the two rings is
the position where the connection between the different materials is made. When we cool
these rings down below their transition temperatures, an interesting phenomenon occurs,
which can be observed in figures 1.1(c) and 1.1(d), where the magnetic field just above the
ring is superimposed on the schematics of the respective rings (the magnetic fields shown
are in fact real data sets obtained from the samples discussed in chapter 5). In the absence
of any external magnetic fields or currents one of the rings clearly shows a magnetic field,
which is absent in the other ring. This magnetic flux is caused by a circulating current
which has started to flow spontaneously in the ring and its magnitude corresponds exactly
to half of a magnetic flux quantum (one flux quantum Φ0 = 2.07 · 10−15 Wb).

The spontaneously generated half-integer flux quantum is the macroscopic manifesta-
tion of the quantum mechanical wavefunction which can be used to describe the quantum
processes that take place in the superconductors, and can not be explained classically.
It arises due to a mismatch in the order parameter symmetries of the isotropic low-Tc
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CHAPTER 1. INTRODUCTION

Figure 1.1: (a)-(b) Schematic of a ring connecting a high-Tc superconductor to a low-Tc

superconductor in two different geometries. (c)-(d) Magnetic field profile superimposed
on the ring schematics. One of the rings displays a spontaneously generated half-integer
flux quantum.

superconductor and the high-Tc superconductor which was assumed to have a d-wave sym-
metry, i.e. a phase difference π occurs for orthogonal directions in k-space. This property
is exploited in the ring of figure 1.1(a) and as a result the phase of the wavefunction, when
going around the ring, picks up an extra phase π compared to, for example, the ring in fig-
ure 1.1(b). The single-valuedness of the superconducting wavefunction dictates that this
phase difference needs to be compensated for, which, provided the inductance of the ring
is large enough, is realized through the generation of a half-integer flux quantum. The
phenomenon of spontaneously generated half-integer magnetic flux quanta in structures
combining superconductors with conventional and unconventional pairing symmetries was
first recognized by Geshkenbein, Larkin and Barone [6, 7].

This thesis focuses on the spontaneously generated flux in YBa2Cu3O7−δ/Nb hybrid
superconducting structures. Strictly speaking, as will be discussed in section 2.10, the
spontaneously generated flux in such structures will only correspond to a half-integer
flux quantum in the large inductance limit; the half-integer flux quanta will not be fully
formed for smaller inductances. Keeping this in mind, the terms ’half-integer’ and ’frac-
tional’ will be used more or less interchangeably throughout this thesis. We will present
experiments where the fractional flux quanta are used for a fundamental study of the or-
der parameter symmetry in the cuprate superconductor YBa2Cu3O7−δ (YBCO) as well
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as for the realization of a novel logic circuit element in superconducting digital electron-
ics. Experiments have been performed using superconducting π-rings as described in the
above, in and so-called corner junctions, where the spontaneous flux is generated at a
d-wave-induced discontinuity point in a long Josephson junction.

The outline of the thesis is as follows: in chapter 2 a brief introduction is given to su-
perconducting loops containing Josephson junctions. After a brief historical introduction
to superconductivity several key aspects that are of importance to our experiments, such
as fluxoid quantization and the Josephson effect, are presented. The DC SQUID, which
was used as a magnetic field sensor in most experiments described in this thesis, will also
be discussed here. The chapter closes with a description of the effect of intrinsic π-phase
shifts in superconducting Josephson loops and the formation of fractional flux quanta in
such structures.

Chapter 3 is concerned with the actual realization of π-phase shifts through the un-
conventional order parameter symmetry of YBCO. First, the well-known spherical har-
monics are used to describe the order parameter symmetry in three dimensions. Then
the two-dimensional projections are discussed as well as a few considerations with respect
to conventions in current-day literature. Finally, it is shown how the superconductors
YBCO and niobium can be combined in order to obtain the desired half-flux quantum
effect.

In chapter 4 the experimental realization of the YBCO/Nb ramp-type Josephson struc-
tures is discussed. YBCO is a member of the so-called cuprate superconductors, in which
superconductivity is believed to occur in the copper-oxygen planes. The superconducting
properties of YBCO depend crucially on the crystal growth and are highly sensitive to
oxygen deficiencies. Considerations associated with the material properties of YBCO and
Nb are discussed as well as the processing steps required for reliable and reproducible
Josephson contacts between the two superconductors.

Chapter 5 is concerned with the angle-resolved determination of the YBCO pairing
symmetry. In these experiments scanning SQUID microscopy was performed on an array
of YBCO/Nb rings with one of the junction angles varying. With these phase-sensitive
experiments a quantitative analysis of the s-wave admixture to the predominantly d-wave
order parameter symmetry in YBCO as well as an upper bound to possible complex
admixtures is given.

Chapter 6 deals with the integration of π-rings in a novel logic circuit element for
digital superconducting electronics. First several general concepts of rapid single flux
quantum technology (RSFQ) are presented, followed by the design of an RSFQ test circuit
containing a toggle flip-flop based on d-wave-induced spontaneously generated half-integer
flux quanta. The correct operation of this device was experimentally determined and will
be presented.

Chapter 7 is concerned with the on-chip manipulation and detection of half-integer
flux quanta in double corner junctions. In the ground state these corner junctions are
characterized by two antiferromagnetically coupled half-integer magnetic flux quanta. The
sine-Gordon equation is used to describe these junctions and the phase- magnetic flux-
and current-profiles are derived analytically for both the single and the double corner
junction. The predicted response to a transport current is discussed. In conclusion, the
experimental observation of a controlled toggling between the two ground states in the
double corner junctions is presented.
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Chapter 2

Superconducting loops
containing Josephson junctions

2.1 Introduction

Spontaneously generated flux in superconducting loops containing Josephson junctions
and an intrinsic π-phase shift (π-rings) form the basis of this thesis. The objective of this
chapter is discuss why these loops act as they do and to place them in a proper context.
After a brief discussion of superconductivity in general, one of its most striking properties,
fluxoid quantization, will be presented. Fluxoid quantization stands at the heart of all
superconducting interferometers, of which the DC SQUID will briefly be reviewed. Along
the way, the Josephson junction will be introduced, as well as its analogy to a pendulum
in the RCSJ model. With the discussion of the effect of π-phase shifts all elements for
a proper understanding of π-rings have been presented. How these π-phase shifts are
physically implemented will be left for later chapters.

2.2 Superconductivity

In 1908 the Dutch physicist Heike Kamerling Onnes managed the first successful lique-
faction of helium at the Physical Laboratory in Leiden (which would later be named after
him and still bears his name to this day) [8]. This achievement enabled the Leiden group
to enter an until then unexplored temperature regime down to the boiling point of liquid
helium (4.2 K at standard pressure). By reducing the pressure on the helium bath the
base temperature could even be lowered further down to approximately 1.5 K. Resistivity
measurements were performed on different metals in this regime to gain insight into the
low temperature behavior of metals which was at that time heavily debated.

Only three years later, in 1913, Kamerlingh Onnes and his assistant Gilles Holst dis-
covered that the resistance of solid mercury suddenly drops to zero when it is cooled
below its critical temperature Tc of 4.2 K [1–3]. Though it was Holst who performed
the actual measurement, usually only Kamerlingh Onnes is credited for the discovery [9].
Incidentally, Holst would later become not only the first employee (1914) but also the first
director (1926) of the prestigious Philips Physics Laboratory (’Nat.Lab.’) [10]. With their
experiment Kamerlingh Onnes and Holst had found the first of a new class of materials:
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CHAPTER 2. SUPERCONDUCTING LOOPS CONTAINING JOSEPHSON JUNCTIONS

Figure 2.1: Discoverers of low-Tc and high-Tc superconductivity: (a) Heike Kamerlingh
Onnes, (b) Johannes Georg Bednorz and (c) Karl Alex Müller.

the superconductors. The importance of materials that can carry currents without dis-
sipation was immediately recognized and soon the search for superconductivity in other
materials had started. Already by December 1912 Kamerlingh Onnes had demonstrated
that superconductivity can be achieved in tin (3.8 K) and lead (6 K, later raised to 7.2 K)
as well [11]. In 1913 Kamerlingh Onnes was awarded the Nobel prize ”for his inves-
tigations on the properties of matter at low temperatures which led, inter alia, to the
production of liquid helium” [12].

In the early days the Leiden group had a monopoly on superconductivity research
simply because it was the only group in the world capable of liquifying helium. This
changed after the first world war when in 1923 a helium liquefier, based on the Leiden
design, started operation at the University of Toronto. Four years later a helium liquefier
capable of producing 10 liters per hour was started at the Physikalisch-Technische Reich-
sanstalt (PTR) near Berlin under the direction of Walther Meissner [13]. Many different
compounds were tested for superconductivity and in 1930 a new record-Tc was obtained in
NbC: 10.3 K [14, 15]. Later that year, superconductivity was discovered in pure niobium,
which was found to become superconducting at 8.5 K [16] (later this was raised to 9.25 K).
Niobium-based technology is currently the standard for superconducting digital electronic
circuits [17].

For two decades superconductors were thought to be merely ideal conductors, until
in 1933 Walther Meissner and Robert Ochsenfeld demonstrated that in fact supercon-
ductors differ from ideal conductors in that they actively expel magnetic fields [18]. This
effect is known as the Meissner-Ochsenfeld effect. Meanwhile efforts were made to develop
a theory of superconductivity that could explain the experimentally observed phenomena:
in 1935 the brothers Fritz and Heinz London proposed a two-fluid model in which they
introduced two equations in addition to Maxwell’s equations, which would later be named
after them, to govern the electromagnetic fields in superconductors [19]. In 1950 Ginzburg
and Landau developed a macroscopic theory that described superconductivity in terms
of an order parameter Ψ and provided a derivation for the London equations [20]. The
theoretical efforts culminated in 1957 through the development of the BCS theory which
provides the current understanding of the nature of low-Tc superconductivity [5]. In BCS
theory, named after its founders Bardeen, Cooper and Schrieffer, the charge carriers are

6



2.2. SUPERCONDUCTIVITY

Figure 2.2: Development of the highest known critical temperature Tc in time. Data
points indicated with an asterisk (∗) are measured under hydrostatic pressure [1–4, 11, 14–
16, 22, 25, 26, 29, 30, 34–42, 61–67].

pairs of electrons that are bound via electron-phonon interactions. The electron pairs be-
have as bosons and collectively occupy a single superconducting state which is separated
from the normal states by an energy gap. Bardeen, Cooper and Schrieffer were awarded
the 1972 Nobel prize for their development of the BCS theory [21].

Meanwhile superconductivity was found in many new compounds. In 1954 supercon-
ductivity was discovered Nb3Sn (18 K) by Matthias et al. [22]. The high critical current
density of Nb3Sn makes it of the most popular materials today for large scale applica-
tions such as superconducting magnets in Magnetic Resonance Imaging (MRI) systems or
particle accelerators such as the Large Hadron Collider (LHC). The International Ther-
monuclear Experimental Reactor (ITER) which is currently being built will require more
than 500 tons of Nb3Sn wire [23, 24]. For over a decade Nb3Sn remained the highest-Tc

superconductor until in 1967-1978 the liquid hydrogen (boiling point 20.3 K) barrier was
broken through the discovery of superconductivity in Nb3Al1−xGex [25, 26].

For about thirty years after the introduction of the BCS theory the theory of super-
conductivity was thought to be complete. During that period McMillan had published
a paper on the transition temperature in strong-coupled superconductors [27]. Using a
model which was based on BCS theory, he was able to calculate transition temperatures
within an accuracy of a few percent. For sensible input parameters the transition tem-
peratures never exceeded 40 K, and soon an upper limit on Tc in the 30-40 K regime was

7



CHAPTER 2. SUPERCONDUCTING LOOPS CONTAINING JOSEPHSON JUNCTIONS

silently assumed [28, 29]. The surprise was therefore great when in 1986 Johannes Georg
Bednorz and Karl Alex Müller reported signatures for superconductivity at 35 K [30].
This result was even more remarkable considering the fact that it had been observed
in a Ba-La-Cu-O compound, a ceramic material that is only a moderate conductor at
room temperature. The initial scepticism about the discovery was soon dispelled how-
ever, as groups around the world reproduced the experiment [31]. Bednorz and Müller
were awarded the 1987 Nobel prize for basically what is now known as high-Tc supercon-
ductivity [32].

The discovery of the high-Tc superconductors had given the field a new impulse, as
can be seen in figure 2.2. Within a year a Tc of 93 K was observed in an Y-Ba-Cu-O com-
pound [4]. With a transition temperature comfortably above the boiling point of liquid
nitrogen (77 K) cooling down could be greatly facilitated. Using X-ray analysis the sto-
ichiometry of the superconducting phase was soon determined to be YBa2Cu3O7−δ [33].
The maximum critical temperature was increased even further with the discovery of su-
perconductivity in different copper-oxide compounds (or cuprates for short). In 1998
the bismuth- and thallium-based cuprates raised the highest Tc to 114 K and 125 K,
respectively [34–38], and in 1992 the Tc of the latter was increased to 131.8 K under a
pressure of 150 kbar [39]. Interestingly, the highest transition temperatures today are
achieved in cuprates which are based on mercury, the element that initiated the field of
superconductivity [40–42]. At the moment of writing the highest Tc is 164 K, observed
in HgBa2Ca2Cu3O8+δ under a pressure of 310 kbar [42].

Besides the cuprates, several new types of compounds were found to exhibit super-
conductivity, such as BaKBiO [43, 44], alkali metal doped fullerenes [45–49], the borocar-
bides [50–56], magnesium diboride [57], carbon nanotubes [58] and, most recently, iron
arsenide based compounds [59, 60]. In terms of critical temperature however, these su-
perconductors can not (yet) compete with the cuprates: at the moment of writing none
of these shows superconductivity at liquid nitrogen temperature.

A little over twenty years after its discovery , the origin of high-Tc superconductiv-
ity is still not understood and a matter of heavy debate. There are many interesting
differences between high-Tc and low-Tc superconductors, however. One of the most strik-
ing differences is in the symmetry of the order parameter. How the difference in order
parameter symmetry is used for the spontaneously generated half-integer magnetic flux
quanta described in this thesis will be the topic of section 3.3.

2.3 Fluxoid quantization

Superconductivity is a quantum phenomenon that manifests itself on a macroscopic scale.
The ensemble of all electrons participating in the superconducting ground state (the super-
conducting condensate) can be described by a single macroscopic quantum wavefunction

Ψ(r, t) = |Ψ(r, t)| eiθ(r,t) (2.1)

with |Ψ(r, t)| the amplitude and θ(r, t) the phase at position r and time t. The probability
density Ψ∗Ψ is related to the total number of charge carriers N? by the normalization
condition ∫

Ψ∗(r, t)Ψ(r, t)dV = N? (2.2)

Because the number of charge carriers involved in the superconducting condensate is large
Ψ∗Ψ can be interpreted [68] as the local charge carrier density n?.
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2.3. FLUXOID QUANTIZATION

The macroscopic wavefunction obeys the Schrödinger equation for a charged particle
in an electromagnetic field [69]

i~
∂Ψ
∂t

=

[
1

2m?

(
~
i
∇− q?A

)2

+ q?φ

]
Ψ (2.3)

Here m? and q? are the mass and charge of the charge carriers, and A(r, t) and φ(r, t)
are the magnetic vector potential and scalar potential, which are related to the magnetic
and electric fields B and E by

B = ∇×A (2.4)

and
E = −∇φ− ∂A

∂t
(2.5)

respectively.
Multiplying equation (2.3) by Ψ∗ and subtracting its complex conjugate yields

∂

∂t
(Ψ∗Ψ) = −∇ ·

[
~

2m?i
(Ψ∗∇Ψ−Ψ∇Ψ∗)− q?

m?
|Ψ|2 A

]
(2.6)

Upon multiplication with q? we recognize this as the electromagnetic continuity equation

∂ρs

∂t
= −∇ · Js (2.7)

with ρs the charge density and

Js =
~q?

2m?i
(Ψ∗∇Ψ−Ψ∇Ψ∗)− q?2

m?
|Ψ|2 A (2.8)

the current density. Equation (2.8) is known as the second Ginzburg-Landau equation
and can also be obtained from a phenomenological treatment where the free energy of a
superconductor is expanded in powers of Ψ [20]. It is also consistent with the microscopic
BCS theory (in 1959 Gor’kov showed that the Ginzburg-Landau theory is derivable as a
limiting case of the BCS theory [70]).

Substituting equation (2.1) into equation (2.8) we find

ΛJs + A =
~
q?
∇θ (2.9)

with
Λ ≡ m?

n?q?2
(2.10)

This result shows that the phase of the superconducting condensate is related not only
to the current but also to the magnetic field via the vector potential A, which becomes
more apparent when we integrate equation (2.9) around a closed contour Γ:∮

Γ

ΛJs · dl +
∮

Γ

A · dl =
~
q?

∮
Γ

∇θ · dl (2.11)

Using Stokes’ Theorem to identify the middle term as the magnetic flux∮
Γ

A · dl =
∫

S

(∇×A) · dS =
∫

S

B · dS ≡ Φ (2.12)

9



CHAPTER 2. SUPERCONDUCTING LOOPS CONTAINING JOSEPHSON JUNCTIONS

and realizing that the integral of ∇θ around any closed contour has to be an integer
times 2π to ensure the single-valuedness of the wavefunction (2.1), we find the celebrated
fluxoid quantization condition: ∮

Γ

ΛJs · dl + Φ = nΦ0 (2.13)

In which
Φ0 ≡

h

|q?|
=

h

2e
= 2.07 · 10−15 Wb (2.14)

is the magnetic flux quantum.
Consider the integration contour Γ depicted in figure 2.3. When the path is chosen

in the bulk superconductor where the magnetic field is expelled, the current density Js is
zero and we find that the flux in the hole is quantized

Φ = nΦ0 (2.15)

The experimental confirmation in 1961 [71] was the first experimental evidence that the
charge carriers in a superconductor (the Cooper pairs) carry a charge of q? = −2e. It is
important to note that equation (2.15) is a special case. In general, the fluxoid, defined
as the left-hand side of equation (2.13), is quantized, not the flux. Another important
aspect is that Φ stands for the total flux, which is a sum of the externally applied flux
and the self-generated flux.

2.4 London penetration depth and coherence length

Two important material properties are the London penetration depth λL and the coher-
ence length ξ. The London penetration depth is the characteristic length scale over which
magnetic fields can penetrate into a superconductor. This can be easily seen by taking the
curl of equation (2.9) and expressing Js in terms of the magnetic field B using Maxwell’s
equations, which yields

∇2B =
µ0

Λ
B (2.16)

The solution for a magnetic field oriented along the z-axis penetrating the superconducting
semispace x > 0 is Bz = B0 exp (−x/λL) with

λL =

√
Λ
µ0

(2.17)

The coherence length is the typical length scale over which variations in the order para-
meter Ψ occur. It can be derived from and was first introduced in the Ginzburg-Landau
theory [20]. Sometimes the coherence length is referred to as the ’size of a Cooper pair’:
within the BCS model it can be regarded as the distance over which electrons ’feel’ each
other through electron-phonon interactions. The ratio of the London penetration depth
and the coherence length

κ =
λ

ξ
(2.18)

is known as the Ginzburg-Landau parameter. The Ginzburg-Landau parameter deter-
mines if a superconductor is type I (κ < 1/

√
2) or type II (κ > 1/

√
2). For a type

10



2.5. GAUGE INVARIANCE

Figure 2.3: Integration path Γ in a bulk superconductor.

I superconductor the surface energy σns of a normal metal-superconductor interface is
positive and perfect diamagnetism occurs below the critical temperature Tc and critical
field Bc [72]. For a type II superconductor the surface energy σns is negative. Below the
lower critical field Bc1 it acts as a type I superconductor, but between the lower critical
field Bc1 and the upper critical field Bc2 the external magnetic field is only partly ex-
cluded and a mixed state exists in which flux is penetrating the superconductor through
quantized vortices that have a normal core with a radius of the order ξ. These vortices
are known as Abrikosov vortices, after the physicist who first predicted them [73]. The
flux carried by a single Abrikosov vortex corresponds to exactly one flux quantum Φ0.

2.5 Gauge invariance

The vector- and scalar potentials A and φ from which the electromagnetic fields E and B
can be determined are not uniquely defined. In fact, Maxwell’s equations are invariant
under the gauge transformation

A −→ A +∇χ

φ −→ φ−
∂χ

∂t

(2.19)

as can be readily seen from equations (2.4) and (2.5). However, upon inspection of equa-
tion (2.9) this seems to suggest that the experimentally measurable quantity js depends
on the gauge chosen which should of course not be the case. The solution to this paradox
lies in the fact that for the Schrödinger equation (2.3) to be gauge invariant the phase θ
needs to be transformed along with the potentials in the following way

A −→ A +∇χ

φ −→ φ−
∂χ

∂t

θ −→ θ −
2π
Φ0
χ

(2.20)

11



CHAPTER 2. SUPERCONDUCTING LOOPS CONTAINING JOSEPHSON JUNCTIONS

2.6 Josephson junctions

A Josephson junction is a weak link between two superconductors where superconductiv-
ity is suppressed. In the junction the wavefunctions of the two superconductors overlap,
leading to interesting interference effects. In the absence of a magnetic vector potential A
the current flowing through the junction is related to the phase drop between the two
wavefunctions via

Is = Ic sin (θ1 − θ2)A=0 (2.21)

It is emphasized that this relation only holds when A = 0. It could not be the general
equation for the current through a junction, because the current through the junction
is directly related to the phase difference θ1 − θ2. But the phase difference depends on
the gauge chosen via equation (2.20) whereas the supercurrent Is is an experimentally
measurable, and thus gauge invariant, quantity. Equation (2.21) can be written in its
gauge invariant form by defining the gauge such that

A′ = A +∇χ = 0 (2.22)

This results in a phase difference

θ′1 − θ′2 = θ1 − θ2 +
2π
Φ0

r2∫
r1

∇χ · dl (2.23)

Using Is = I ′s = Ic sin (θ′1 − θ′2)A′=0 together with (2.22) and (2.23) we find

Is = Ic sinϕ (2.24)

with ϕ the gauge invariant phase difference, defined by

ϕ ≡ θ1 − θ2 −
2π
Φ0

r2∫
r1

A · dl (2.25)

Though it is not entirely correct, in this thesis the (gauge invariant) phase difference ϕ
over a junction will often be simply referred to as the ’phase’ of a junction. The voltage
over the junction is related to the gauge invariant phase via

V =
Φ0

2π
dϕ

dt
(2.26)

Equations (2.24) and (2.26) were first predicted by Brian D. Josephson [74, 75] and are
now known as the first and second Josephson equation, respectively. The energy stored
in a junction can be calculated straightforwardly from these equations by integrating the
work needed to change the phase from 0 to ϕ:

UJ =

t∫
0

IV dt =
Φ0Ic
2π

ϕ∫
ϕ0

sin(ϕ)
dϕ

dt
dt (2.27)

or
UJ = EJ (1− cosϕ) (2.28)

with
EJ ≡

Φ0Ic
2π

(2.29)

the coupling energy (the integration constant was chosen to give UJ = 0 for ϕ = 0).
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2.7. FLUXOID QUANTIZATION IN A MULTI-JUNCTION LOOP

Figure 2.4: Integration path Γ in a superconducting loop containing multiple Josephson
junctions with phases ϕ1...ϕN and in a magnetic field B.

2.7 Fluxoid quantization in a multi-junction loop

The fluxoid quantization condition for a loop containing N Josephson junctions can now
easily be derived by integrating the gradient of the phase ∇θ around the loop along the
contour as shown in figure 2.4. Using equations (2.9) and (2.25) we find∮

∇θ · dl = − 2π
Φ0

∫
Γ′

ΛJs · dl−
2π
Φ0

∮
A · dl−

N∑
i=1

ϕi (2.30)

where Γ′ denotes the contour Γ with the Josephson junctions excluded. The first integral
on the right-hand side can be ignored when the superconducting leads are sufficiently
thick so Js = 0 along the contour Γ′. Then, again using the single-valuedness of the
wavefunction and Stokes’ theorem equation (2.30) simplifies to

1
2π

N∑
i=1

ϕi +
Φ
Φ0

= n (2.31)

This equation can be thought of as the fluxoid quantization condition of multi-junction
loops with thick leads. It elegantly shows that the sum of the normalized phase and flux
is quantized.

2.8 RCSJ model

The two Josephson equations are sufficient for describing the DC characteristics of a
weak link. For a proper description of the voltage state, the physical junction is usually
modelled as an ideal junction shunted by a resistor and a capacitor, see figure 2.5(a).
This model is known as the resistively and capacitively shunted junction (RCSJ) model.
Kirchhoff’s law for this shunted junction reads

I = C
dV

dt
+ Ic sinϕ+

V

R
(2.32)
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Inserting (2.26), using the dot-convention for the time-derivative and rearranging terms
this yields

ϕ̈+
1
RC

ϕ̇+ ω2
p

(
sinϕ− I

Ic

)
= 0 (2.33)

with

ωp =
√

2π
Φ0

Ic
C

(2.34)

the plasma frequency. This equation is reminiscent of the equation of motion for a rigid
pendulum of length ` and mass m on which an external torque τ is exerted, as illustrated
in figure 2.5(b). The equation of motion for this system reads

ϕ̈+ γϕ̇+ ω2
0

(
sinϕ− τ

mg`

)
= 0 (2.35)

Here ϕ is the angle of the pendulum with respect to the vertical axis, γ is a damping-
coefficient, and

ω0 =
√
g

`
(2.36)

is the resonance frequency of the pendulum. The properties of a Josephson junction can
be conveniently described in terms of the damped pendulum model (the equivalence of
the two systems was demonstrated experimentally by Hansma and Rochlin [76]). The
externally applied torque and the pendulum angular frequency are related to the total
current through and voltage over the junction (2.26) as

τ ←→ I

ω ←→
2π
Φ0

V
(2.37)

For torques smaller than a critical torque mg` the pendulum assumes an equilibrium
position and a static situation arises. Correspondingly, for currents smaller than the
critical current Ic the phase adjusts to the current and no voltage appears over the
junction. When the torque is released the pendulum will start oscillating at its resonance
frequency ω0. The movement of the pendulum will be damped because of friction which
scales linearly with the angular velocity. Analogously, junction phase oscillations are
described by the plasma frequency ωp and damping is characterized by the RC time. The
product of these is known as the quality factor

Q = ωpRC =
√
βC (2.38)

A more commonly used damping parameter is the square of the quality factor

βC =
2π
Φ0
IcR

2C (2.39)

βC is known as the Stewart-McCumber parameter [77, 78].
When the external torque exceeds the critical torque the pendulum enters the dy-

namical state where it keeps rotating. Correspondingly, when the Josephson junction is
biased above its critical current it enters the voltage state. Though this is a dynamical
process, these oscillations take place at very high frequencies (typically hundreds of GHz)
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2.8. RCSJ MODEL

Figure 2.5: (a) Schematic of a resistively and capacitively shunted Josephson junction.
(b) Mechanical analogon: a rigid pendulum with mass m, length ` on which an external
torque τ is exerted. (c) IV characteristic of an overdamped junction (βC = 0.5). (d) IV
characteristic of an underdamped junction (βC = 5).

and an average DC current and voltage will be measured. Equation (2.33) can be solved
to obtain the IV characteristics of a Josephson junction. In the limit of strong damping
(βC � 1) the problem reduces to a first order differential equation and the analytical
solution, for I > Ic, is given by

V = IcR

√(
I

Ic

)2

− 1 (2.40)

This solution interpolates smoothly between V = 0 at the critical current to Ohm’s law
(V = IR) for I � Ic.

In general the solution to equation (2.33) has to be computed numerically. The IV
for an overdamped junction βC < 1 is shown in figure 2.5(c). For underdamped (βC > 1)
junctions equation (2.33) is bistable in a regime below Ic, resulting in a hysteretic IV
characteristic as depicted in figure 2.5(d). In this regime the built-up momentum of the
pendulum can overcome the damping due to friction, and the pendulum will not stop

15
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rotating until the potential energy gained upon completing a cycle is smaller than the
energy lost due to dissipation. This happens at a torque that is smaller than the critical
torque, and in the junction equivalent this current is known as the retrapping current Ir. It
should be noted that in any real experiment the observed critical current and retrapping
current will differ from their respective RCSJ values due to thermal fluctuations and
macroscopic quantum tunnelling [79].

The separation between the overdamped and underdamped regime is usually defined
at βC = 1. Mathematically however, the transition between hysteretic and non-hysteretic
behavior of equation (2.33) occurs at a Stewart-McCumber parameter which is slightly
smaller. Many authors have numerically calculated the bifurcation curve βC(Ir/Ic), but
interestingly the value βC(1) is rarely mentioned explicitly [78, 80–83]. From Barone and
Paternò [84] a value β−1/2

C = 1.15 or βC = 0.756 is obtained.

2.9 DC SQUID

One famous example of a multi-junction loop is the 2-junction loop, also known as the
direct current superconducting quantum interference device (DC SQUID). This device
is the most sensitive magnetic field sensor that is currently available [85–87]. SQUIDs
are employed in a broad variety of fields, ranging from the non-destructive inspection
of fatigue cracks in airplanes to the monitoring of heart- and brain activity and from
astronomy to geological surveying [87–90]. SQUIDs are good candidates for the detection
of half-integer flux quanta and therefore play a central role in all experiments described
in this thesis.

2.9.1 Critical current of a SQUID

A schematic of a DC SQUID is depicted in figure 2.6(a). The total current I is related
to the currents through the individual junctions via Kirchhoff’s law

I = Ic1 sinϕ1 + Ic2 sinϕ2 (2.41)

Taking into account the direction of I2, the fluxoid quantization condition (2.31) reduces
to

1
2π

(ϕ1 − ϕ2) +
Φ
Φ0

= n (2.42)

Because the two phases are related via the magnetic field, the maximum dissipationless
current that a SQUID can support is a function of the magnetic flux. Combining (2.41)
and (2.42) we find

Imax =

√
(Ic1 − Ic2)2 + 4Ic1Ic2 cos2

(
π

Φ
Φ0

)
(2.43)

Imax is the critical current of the SQUID1. It should be noted, however, that the flux Φ
in this equation is the actual flux threading the SQUID loop, which is the sum of the
externally applied flux Φe and the self-generated flux

Φ = Φe + L1Ic1 sinϕ1 − L2Ic2 sinϕ2 (2.44)
1To avoid confusion with the critical currents of SQUID junctions Imax is used here instead of Ic
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2.9. DC SQUID

Figure 2.6: (a) Schematic of a DC SQUID. (b) Fluxoid number n as a function of the
phases ϕ1 and ϕ2. The contours for which n is integer indicate the solutions that sat-
isfy the fluxoid quantization condition. (c) The critical current (solid line) and currents
through junctions 1 and 2 (dashed and dotted lines, respectively) as a function of the
externally applied magnetic flux Φe (βL = 3). (d) The total magnetic flux through the
SQUID loop as a function of the externally applied magnetic flux Φe (βL = 3).

In general, the critical current of a SQUID as a function of the externally applied magnetic
field cannot be calculated analytically because Φ(Φe) cannot be written in an explicit form.
The critical current can be calculated numerically, however. One possible method is to
define a grid of ϕ1 and ϕ2 (both defined between 0 and 2π), and calculate the total flux
and the fluxoid number n on each point for a given external flux Φe. The allowed solutions
lie on the contours for which n is integer, as indicated by the solid lines in figure 2.6(b).
The critical current is then given by the solution that maximizes equation (2.41). The
resulting current and flux are depicted in figures 2.6(c) and 2.6(d) for a symmetric SQUID
with equal junction critical currents (Ic1 = Ic2) and branch inductances (L1 = L2 = L/2).

The SQUID critical current has a periodicity of one flux quantum and has maxima
at Φe = nΦ0. The total flux in the SQUID ring as a function of the externally applied
magnetic flux shows step-like behavior reminiscent of the flux quantization in bulk super-
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Figure 2.7: (a) Critical current and (b) total magnetic flux through the SQUID loop
versus the externally applied magnetic flux. Solid lines: βL = 0, dashed lines: βL = 5,
dotted lines: βL = 10, dash-dotted lines: βL = 100.

conducting rings. When a flux is applied the SQUID reacts by generating a circulating
current to counteract that flux. When the flux becomes too large, however, the circulating
current changes sign and the self-generated flux adds to the external flux, bringing the
total flux towards the next integer number of flux quanta. The transition point occurs
at Φe = (n + 1

2 )Φ0. This can also be recognized in the behavior of the currents through
the individual branches: when an integer number of flux quanta is applied, there is no
screening current and the maximum transport current is achieved when I1 = I2 = Ic. For
non-zero fields however the aforementioned circulating current will add to the current in
one junction and subtract from the current in the other junction. The maximum current
is achieved when one of the junctions reaches Ic. The other junction will then be sepa-
rated from its critical current by an amount equal to twice the circulating current. The
sign-change of the circulating current when the externally applied flux reaches (n + 1

2 )Φ0

can clearly be observed.
The SQUID behavior and the influence of the screening currents are described by the

screening parameter

βL ≡
2πLIc

Φ0
(2.45)

For SQUIDs with a small screening parameter (βL � 1) the influence of the screening
currents is negligible and the flux through the SQUID equals the external flux Φ ≈ Φ0.
For a SQUID with βL = 0 and equal junctions equation (2.43) reduces to

Imax = 2Ic

∣∣∣∣cos
(
π

Φe

Φ0

)∣∣∣∣ (2.46)

In figure 2.7 the critical current and flux are shown for several values of the screening
parameter. The curve for βL = 0 is identical to equation (2.46). For higher values of βL

the SQUID screens external fields more effectively.
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2.9. DC SQUID

Figure 2.8: Effect of asymmetries on the SQUID critical current. (a) βL = 3, λ = 1. Solid
line: κ = 1, dashed line: κ = 2, dotted line: κ = 3. (b) βL = 3, κ = 1. Solid line: λ = 1,
dashed line: λ = 2, dotted line: λ = 3.

2.9.2 Asymmetric SQUID

Most SQUIDs contain asymmetries, whether intentional or because of microscopic irreg-
ularities due to fabrication. An asymmetry in the junction critical currents or branch
inductances will affect the critical current of the SQUID. In figure 2.8 the critical current
is plotted for a screening parameter βL = 1 and different ratios of the junction critical
currents (κ = Ic2/Ic1) and branch inductances (λ = L2/L1). For the calculations βL was
defined using Ic1 for the critical current: βL = 2πLIc1/Φ0. In general, the maximum
critical current for an asymmetric SQUID is not obtained at zero external flux. Com-
bining equations (2.41), (2.42) and (2.44) we find that the SQUID can always obtain its
maximum critical current Ic1 + Ic2. This is achieved when (ϕ1 = ϕ2 = π/2)

Φ?
e

Φ0
=
βL(κλ− 1)
2π(λ+ 1)

+ n (2.47)

This shift of the maximum can be explained by the interplay between the external field,
the screening current and the junction critical currents. For a SQUID with symmetric in-
ductances (λ = 1) the current through the junctions can be regarded as the superposition
of half the applied current and the screening current, which has an opposite sign for each
junction and depends on the externally applied magnetic field. At zero field there will
be no screening currents and therefore the maximum critical current Ic1 + Ic2 cannot be
reached at Φe = 0 for Ic1 6= Ic2 (unless in the special case βL = 0). When Ic2 is slightly
larger than Ic1 (κ & 1) the maximum transport current can be sent when the screening
current is (Ic2 − Ic1)/2, which occurs for Φe & 0. For larger asymmetries κ a larger
screening current and thus a larger external field is required to overcome the difference
in critical currents.

When the asymmetry is not located in the junctions (κ = 1) but in the inductances, the
shift of the maximum critical current can be explained by realizing that the maximum
coincides (for a small externally applied flux) with a total magnetic flux Φ = 0, see
equation (2.43). When the maximum SQUID critical current 2Ic is reached, the self-
generated flux at the moment of switching will be IcL1(1− λ) 6= 0. Since the sum of the
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externally applied flux and the self-generated flux should be equal to the total magnetic
flux the maximum can not be achieved at Φe = 0 but at the external flux as defined in
equation (2.47). SQUID asymmetries also cause a shift of the position where the minimum
critical current is obtained. Moreover, the modulation is influenced by the asymmetry in
the critical current, but is independent of any asymmetry in the inductances [91].

2.9.3 SQUID in the voltage state

The modulation of the SQUID critical current with the enclosed flux is what makes a
SQUID suitable as a flux sensor. The modulation can be detected by reading out the
critical current directly, for example by ramping up the current through the SQUID
until a voltage appears. A far more easy method however, which was also used in our
experiments, is to use the SQUID in the voltage state. To describe this behavior the
SQUID is modelled as a parallel connection of two RCSJ junctions. Each of the junctions
satisfies equation (2.33) and the relation between the junction phases and the externally
applied magnetic field is described by (2.42) and (2.44). For a completely symmetric
SQUID (Ic1 = Ic2 = Ic, C1 = C2 = C, R1 = R2 = R and L1 = L2 = L/2) these
equations reduce toβC ϕ̈1 + ϕ̇1 + sinϕ1 − 1

2
I
Ic
− β−1

L

(
ϕ2 − ϕ1 − 2πΦe

Φ0

)
= 0

βC ϕ̈2 + ϕ̇2 + sinϕ2 − 1
2

I
Ic

+ β−1
L

(
ϕ2 − ϕ1 − 2πΦe

Φ0

)
= 0

(2.48)

were the derivatives are with respect to the normalized time ω2
pRCt. Asymmetries can

be introduced quite straightforwardly (see, for example, the SQUID Handbook [87]). For
any applied current I and magnetic flux Φe the coupled differential equations (2.48) can
be solved to obtain the phases ϕ1(t) and ϕ2(t) as a function of time. From the averages
of the phases and the time-derivative of the phases the DC current and voltage can be
calculated for each junction. In figure 2.9(a) the IV-characteristic of a SQUID is shown
for two values of the external magnetic flux. For Φe = 0 the SQUID has a maximum
critical current of twice the junction critical current Ic and for Φe = Φ0/2 the SQUID
critical current is at a minimum.

When a SQUID is operated in the voltage mode a constant current I is applied and the
voltage over the SQUID is measured. The measured voltage modulates with the applied
magnetic field as indicated in figure 2.9(b). Operated in this way, the SQUID acts as
a flux-to-voltage transducer. The SQUID is most sensitive when operated on the steep
rising (or falling) edges where the SQUID is just biased above its critical current. A flux-
locked loop technique can be used to keep the SQUID at this optimal working point [92].
Another interesting feature that can also be observed from figure 2.9 is that the voltage
modulation for small bias currents is inverted with respect to the voltage modulation for
high bias currents. This behavior can be attributed to LC resonances which are caused by
the nonlinear interaction of the ac Josephson current with the resonant circuit formed by
the loop inductance L and the junction capacitance C [93–95]. Using the second Josephson
equation (2.26) the resonance frequency can be translated to a resonance voltage

Vres =
Φ0

2π
√
LC/2

(2.49)

Using (2.39) and (2.45) the resonance voltage can be expressed in terms of βC , βL and
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Figure 2.9: (a) IV characteristic of a symmetric DC SQUID, calculated for an applied
field corresponding to a maximum critical current Φe = nΦ0 and for a field corresponding
to a minimum critical current Φe = (n + 1

2 )Φ0. (b) Measured voltage over a DC SQUID
operated in the voltage mode for different values of the applied current I. Ic denotes
the junction critical current in both figures and calculations were performed for a SQUID
with βL = 1 and βC = 1.

the IcR-product as

Vres =
√

2
βCβL

IcR (2.50)

which corresponds to a (normalized) resonance voltage of 1.41 for figure 2.9.

2.10 π-rings

A π-ring is a superconducting ring that contains an intrinsic phase shift π (a review of
π-phase shift Josephson structures has been given by Hilgenkamp [96]). This π-phase
shift can be established in several different ways. The phase shift can be incorporated in
the junction itself, for example by using SFS junctions [97, 98], SIFS junctions [99] or by
controlling the energy distribution of current-carrying states in SNS junctions [100]. This
type of junction is known as the π-junction. The current through a π-junction is related
to its phase via I = Ic sin(ϕ + π) = −Ic sinϕ and is therefore sometimes said to have a
negative critical current. Another way to obtain a π-phase shift in a superconducting ring
is by the inclusion of a second loop containing a trapped fluxoid [101, 102]. The π-rings
that were used in our experiments however were established by exploiting the dx2−y2-wave
pairing symmetry of the cuprate superconductors [103, 104], which will be discussed in
section 3.3. Because we use rings containing two different superconducting materials our
rings have a minimum of 2 Josephson junctions.

A schematic of a π-ring is depicted in figure 2.10(a). The π-phase shift is represented as
a separate element. The following discussion also holds if the π-phase shift is incorporated
in one of the junctions, provided the phase of the π-junction is diminished by π in the
current-phase relationship (not in the fluxoid quantization condition), and the separate
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π-phase shift is removed. The fluxoid quantization condition (2.31) for a π-ring reads

1
2π

(ϕ1 + ϕ2 + π) +
Φ
Φ0

= n (2.51)

One glance at this equation shows that the ground state of a ’normal’ 2-junction ring, no
flux and all-zero phases, is no longer an allowed solution. The extra π-phase shift has to
be compensated for if n is to be an integer. This can be accomplished by a rearrangement
of the phases over the junctions and the flux threading the loop. Exactly how these are
affected depends on the characteristics of the ring, and in particular on the screening
parameter βL (2.45). For rings with a small screening parameter (βL � 1) the produced
flux will be negligible, even when the maximum current Ic flows through the ring, so
the additional π-phase shift arises over the phases of the junctions. When the screening
parameter is very large (βL � 1) however, a very small change in phase will result in
the spontaneous generation of a half-flux quantum, leaving the phases almost zero. This
regime is known as the large inductance limit. The half-flux quantum can have positive
or negative polarity, corresponding to a phase shift of ±π.

2.10.1 π-ring in an external magnetic field

We will now discuss how a π-ring responds to an external magnetic flux Φe. In the
following, we will assume Ic2 = κIc1 with κ ≥ 1. The phases ϕ1 and ϕ2 are directly
related via the requirement that the currents through each of the junctions is the same

I = Ic1 sinϕ1 = Ic2 sinϕ2 (2.52)

Thus we find for ϕ2 (modulo 2π)

ϕ2 =

{
arcsin

(
κ−1 sinϕ1

)
π − arcsin

(
κ−1 sinϕ1

) (2.53)

The total energy of a π-ring is given by the sum of the energy stored in the Josephson
junctions (2.28) and the energy stored in the generated magnetic field

U = EJ1(1− cosϕ1) + EJ2(1− cosϕ2) +
1
2
LI2 (2.54)

Given ϕ1, the energy difference between the two solutions for ϕ2 is

U(ϕ2b)− U(ϕ2a) =
Φ0

π

√
I2
c2 − I2 (2.55)

which is always positive. The second solution of equation (2.53) will therefore always be
one of higher energy. This does not imply that this solution can be dismissed, however,
because in general when ϕ2b satisfies the fluxoid quantization condition (2.51), ϕ2a will
not and vice versa.

The flux Φ in (2.51) has two contributions: the externally applied flux Φe and the
self-generated flux LI

Φ = Φe + LI (2.56)

Equations (2.51), (2.52), (2.53), (2.54) and (2.56) can be solved numerically to obtain
the spontaneously generated current, the total flux, and the phases for the ground state
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2.10. π-RINGS

Figure 2.10: (a) Schematic of a π-ring. (b) Total flux threading the loop, (c) spontaneously
generated current, and (d) sum of the phases for a π-ring. Solid lines: βL = 0, dashed
lines: βL = 2, dotted lines: βL = 10000

of a π-ring as a function of the externally applied magnetic flux. The result of this
calculation for a π-ring with equal junctions is plotted in figures 2.10(b)-(d) for different
values of the screening parameter βL. In the small inductance limit the external field
cannot be screened, even for circulating currents close to the critical current, and thus
the total magnetic flux is equal to the externally applied magnetic flux. The phases over
the junctions and the externally applied flux combined compensate for the π-phase shift.
In the large inductance limit the phases remain approximately zero and only a fraction
of the critical current is sufficient to generate a flux which is quantized as (n + 1

2 )Φ0.

2.10.2 Ground state without external flux

We now consider the ground state of an asymmetric π-ring in the absence of an external
magnetic field. In figures 2.11(a)-(c) the phases, flux and circulating current are plotted
as a function of the screening parameter for different critical current ratios κ (βL is defined
based on Ic1). For asymmetric junctions (κ > 1) a clear transition is observed between
currentless solution ϕ1 = π, ϕ2 = 0 and I = Φ = 0 for βL ≤ β?

L and a ground state
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characterized by spontaneously generated currents producing a flux that asymptotically
approaches a half-flux quantum for βL > β?

L. In the following, we will derive an analytical
expression for β?

L. Substitution of ϕ2 from (2.51) into (2.52) and using βLΦ0 sinϕ1/2π
for the self-generated flux (and thus for the total flux as the externally applied field is
assumed to be zero) yields

sinϕ1 = κ sin (ϕ1 + βL sinϕ1) = f(ϕ1) (2.57)

f(ϕ1) and sinϕ1 are depicted in figure 2.11(d). At the intersections equation (2.52) is
satisfied. The currentless solutions ϕ1 = {0, π, 2π} are valid solutions of equation (2.57),
regardless of κ or βL. For the currentless solutions Φ = 0 and the fluxoid quantization
condition (2.51) reads ϕ1 + ϕ2 + π = 2πn. Realizing that we have assumed Ic2 > Ic1 we
find that indeed (ϕ1, ϕ2) = (π, 0) is the solution that minimizes the total energy (2.54).

Non-zero solutions of (2.57) exist only when f(ϕ1) and sinϕ1 have additional intersec-
tions. For symmetry reasons only the interval 0 ≤ ϕ ≤ π needs to be considered. Because
κ ≥ 1 and βL ≥ 0, the slope at the origin f ′(0) = κ(1 + βL) will be larger than 1. Thus
f(ϕ1) > sinϕ1 for ϕ1 ↓ 0. At ϕ1 = π both sinϕ1 and f(ϕ1) cross the βL-axis. If at this
point the slope f ′(π) is larger than -1, f(ϕ1) < sinϕ1 for ϕ1 ↑ π and therefore the two
lines must have crossed above the βL-axis (that is, a non-zero current solution), because
sinϕ1 > 0 for 0 < ϕ1 < π. The condition f ′(π) > −1 can be written as βL > β?

L with

β?
L = 1− κ−1 (2.58)

We have demonstrated that for βL > β?
L non-zero solutions exist. In the following we will

show that these solutions do not exist for screening parameters smaller than β?
L. This

will be proven by demonstrating that on the interval 0 < ϕ1 < π the function f(ϕ1) is
always larger than sinϕ1 when βL < β?

L. In general, the inequality

− cos(ϕ1 + x) sinx < x 0 < x < π (2.59)

is true for any ϕ1 when 0 < x < π (the requirement for x will be checked later). Making
use of the trigonometric relation sin a− sin b = 2 cos(a+b

2 ) sin(a−b
2 ) equation (2.59) can be

rewritten to
sinϕ1 − sin(ϕ1 + 2x) < 2x 0 < x < π (2.60)

Multiplying both sides with κ, substituting

x ≡ βL sinϕ1

2
(2.61)

and rearranging terms we obtain

κ(1− βL) sinϕ1 < κ sin(ϕ1 + βL sinϕ1) ≡ f(ϕ1) (2.62)

Since we are considering the case βL < 1 − κ−1 (which lies between 0 and 1) on the
interval 0 < ϕ1 < π the condition 0 < x < π is automatically satisfied. Moreover, under
these conditions the left-hand side of equation (2.62) is larger than sinϕ1 so we obtain

sinϕ1 < f(ϕ1) (2.63)

Thus we have shown that for βL < β?
L no non-zero solutions exist and only the currentless

solutions are allowed below this threshold.
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Figure 2.11: (a) Phases, (b) flux and (c) current of the ground state of a π-ring as a
function of the screening parameter βL for different values of κ ≡ Ic2

Ic1
. When the junctions

are asymmetric the ground state is currentless when the screening parameter is below a
threshold value β?

L. Solid lines: κ = 1, dashed lines: κ = 1.1, dotted lines: κ = 2, dash-
dotted lines: κ = 10000. (d) Graphical representation for the solutions of equation (2.57),
plotted for κ = 2 and different values of βL. Solid line: sinϕ1, dashed line: f(ϕ1) for
βL = 0, dotted line: f(ϕ1) for βL = 0.5, dash-dotted line: f(ϕ1) for βL = 1.

2.11 Josephson inductance

From the Josephson equations (2.24) and (2.26) the relation between the voltage over a
junction and the time derivative of the current flowing through that junction can easily
be derived to read

V = LJ
dI

dt
(2.64)

with

LJ =
Φ0

2π
√
I2
c − I2

(2.65)
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Thus it follows directly from the Josephson relations that a Josephson junction acts as a
non-linear inductor. LJ is known as the Josephson inductance.

2.12 Summary

In this chapter we have briefly reviewed some of the key aspects of superconducting loops
containing Josephson junctions. We have discussed how the phenomenon of fluxoid quan-
tization in such loops can be used to realize a DC SQUID, one of the most sensitive
sensors currently in existence. The DC SQUID plays a central role in almost all experi-
ments described in this thesis. Incorporating an intrinsic π-phase shift in superconducting
loops containing Josephson junctions was shown to lead to an altered ground state, which
for large screening parameters leads to spontaneously generated flux corresponding to a
fraction of a flux quantum (increasing to half a flux quantum in the large inductance
limit). Though we have presented several consequences of intrinsic π-phase shifts, the
mechanism by which such a π-phase shift can be incorporated was not discussed. How
this phase shift was realized in the devices discussed in this thesis will be the topic of the
next chapter.
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Chapter 3

d-wave-induced half-integer
magnetic flux quanta

3.1 Introduction

In the previous chapter several basic properties of superconducting rings containing
Josephson junctions were discussed. In section 2.10 it was shown that when such rings
contain an intrinsic π-phase shift, the ground state of such a ring is characterized by the
spontaneous generation of fractional flux quanta, which grow asymptotically to Φ0/2 in
the large inductance limit. For the experiments discussed in this thesis the unconventional
order parameter symmetry of YBa2Cu3O7−δ (YBCO) is exploited in order to realize such
a π-phase shift. In this chapter the pairing symmetries of YBCO and Nb are discussed,
as well as how the difference in order parameter symmetry can be used to obtain π-loops.

3.2 Order parameter symmetry

In this section a brief introduction is given to the concept of order parameter symmetry.
Whereas in the field of superconductivity many authors start out by directly considering
the symmetry of the superconducting gap ∆, a slightly different approach is taken here.
The concept of order parameter symmetry is introduced via the quantum mechanical
wavefunction Ψ(r, t) and the spherical harmonics Y m

` (ϕ, θ) which can be used to describe
its symmetry. The first subsections are concerned with the general 3D symmetry func-
tions. In the later sections the projection of these functions onto the two-dimensional
plane and in particular the normalization of these functions is considered.

3.2.1 3D order parameter symmetry

As was discussed in section 2.3 the superconducting condensate can be described by a
complex wavefunction Ψ(r, t) which has an amplitude |Ψ(r, t)| and a phase θ(r, t). When
expressed in spherical coordinates, this wavefunction can conveniently be expressed as a
linear combination of the spherical harmonics Y m

` (ϕ, θ)

Ψ(r, ϕ, θ, t) =
∑
`,m

Y m
` (ϕ, θ)ψm

` (r, t) (3.1)
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Y 0
0 =

√
1
4π Y ±2

2 =
√

15
32π sin2 θe±2iϕ

Y 0
1 =

√
3
4π cos θ Y 0

3 =
√

7
16π (5 cos3 θ − 3 cos θ)

Y ±1
1 = ∓

√
3
8π sin θe±iϕ Y ±1

3 = ∓
√

21
64π sin θ(5 cos2 θ − 1)e±iϕ

Y 0
2 =

√
5

16π (3 cos2 θ − 1) Y ±2
3 =

√
105
32π sin2 θ cos θe±2iϕ

Y ±1
2 = ∓

√
15
8π sin θ cos θe±iϕ Y ±3

3 = ∓
√

35
64π sin3 θe±3iϕ

Table 3.1: Spherical harmonics for ` = 0, 1, 2, 3.

with ϕ the azimuthal angle and θ the polar angle1. The spherical harmonics are given
by [105]

Y m
` (ϕ, θ) = ε

√
(2`+ 1)

4π
(`− |m|)!
(`+ |m|)!

eimϕPm
` (cos θ) (3.2)

with ` a positive integer, m an integer between -` and +`, and

ε =

{
1 if m ≤ 0
(−1)m if m > 0

(3.3)

Pm
` (cos θ) is the associated Legendre function, defined by

Pm
` (x) = (1− x2)|m|/2

(
d

dx

)|m|

P`(x) (3.4)

with

P`(x) =
1

2``!

(
d

dx

)`

(x2 − 1)` (3.5)

the `th Legendre polynomial. The first few spherical harmonics are listed in table 3.1.
The spherical harmonics constitute a complete set of orthonormal functions

2π∫
ϕ=0

π∫
θ=0

Y m
` (ϕ, θ)Y m′

`′ (ϕ, θ)∗ sin θdθdϕ = δ``′δmm′ (3.6)

that can be used to construct any ϕ- and θ-dependence, and are therefore very suitable
to describe the (angular) symmetry of the order parameter.

In general, the spherical harmonics Y m
` (ϕ, θ) are complex functions. However, an

alternative but equivalent set of spherical harmonics Xm
` (ϕ, θ) comprising only real basis

functions can be constructed from (3.2) by using the sum and difference of Y m
` and Y −m

`

rather than the functions themselves:

Xm
` (ϕ, θ) =


Y 0

` (ϕ, θ) m = 0
1√
2

[
Y m

` (ϕ, θ) + (−1)mY −m
` (ϕ, θ)

]
m > 0

1√
2i

[
Y m

` (ϕ, θ)− (−1)mY −m
` (ϕ, θ)

]
m < 0

(3.7)

1The angular coordinates are not to be confused with the phase θ and gauge invariant phase drop ϕ
that were introduced earlier
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From equations (3.2) through (3.5) one can easily derive that the complex conjugate of
Y m

` (ϕ, θ) is related to Y −m
` (ϕ, θ) via

Y m
` (ϕ, θ)∗ = (−1)mY −m

` (ϕ, θ) (3.8)

so the spherical harmonics in equation (3.7) can be rewritten as

Xm
` (ϕ, θ) =


Y 0

` (ϕ, θ) m = 0√
2<{Y m

` (ϕ, θ)} m > 0√
2={Y m

` (ϕ, θ)} m < 0
(3.9)

With <{Y m
` (ϕ, θ)} and ={Y m

` (ϕ, θ)} the real and imaginary parts of Y m
` (ϕ, θ), respec-

tively. As a last refinement, we can redefine the basis functions such that only the spherical
harmonics Y m

` with m ≥ 0 are required. Making use of the fact that

=
{
Y −m

`

}
= (−1)m+1={Y m

` } (3.10)

we see that the imaginary parts for positive and negative m are related only via a minus-
sign when m is even, and therefore build up exactly the same function space. Thus if we
redefine the basis functions Xm

` (ϕ, θ) for m < 0 by incorporating this factor (−1)m+1 we
obtain a complete set of functions Zm

` (ϕ, θ) which is equivalent to the spherical harmonics
in equation (3.2) but consists of only real functions making use of Y m

` with m ≥ 0:

Zm
` (ϕ, θ) =


Y 0

` (ϕ, θ) m = 0
√

2<
{
Y
|m|
` (ϕ, θ)

}
m > 0

√
2=

{
Y
|m|
` (ϕ, θ)

}
m < 0

(3.11)

The functions Zm
` (ϕ, θ) obey the normalization condition

2π∫
ϕ=0

π∫
θ=0

Zm
` (ϕ, θ)Zm′

`′ (ϕ, θ)∗ sin θdθdϕ = δ``′δmm′ (3.12)

(the complex conjugate in this equation is actually superfluous because all Zm
` (ϕ, θ) are

real functions). A graphical representation of the order parameter symmetries for the first
four values of the quantum number ` is depicted in figure 3.1. The figures are labelled by
the commonly used names s-, p- d- and f -wave which originate from atomic spectroscopy.
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Figure 3.1: Graphical representation of the s-, p- and d-wave order parameter symmetries.
The amplitude and phase are indicated by the radius and color, respectively. Blue and
red lobes have a relative phase difference π.
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Figure 3.1: (continued) f -wave order parameter symmetry and three linear combinations
of order parameters. The phases differ from 0 and π only for linear combinations involving
imaginary and real parts.

31



CHAPTER 3. D-WAVE-INDUCED HALF-INTEGER MAGNETIC FLUX QUANTA

3.2.2 Linear combinations of spherical harmonics

The last three plots in figure 3.1 show linear combinations of the spherical harmonics. In
the context of order parameter symmetry these linear combinations are often referred to
as admixtures to the order parameter. For example, as will be discussed in more detail
in chapter 5, the general consensus currently is that the order parameter symmetry in
YBCO is predominantly dx2−y2-wave with a small s-wave component (admixture).

In general an order parameter symmetry Ω(ϕ, θ) comprising N spherical harmonics
can be written as

Ω(ϕ, θ) =
N∑

n=1

cnZn(ϕ, θ) (3.13)

The choice of coefficients cn is fixed by two conditions: the (relative) weight factors wn

of the different components and the normalization of Ω(ϕ, θ). If the coefficients cn are
defined as

cn =
wn√

N∑
n=1
|wn|2

(3.14)

both conditions are satisfied: the coefficients are proportional to the weight factors and
the normalization condition is satisfied because

N∑
n=1

|cn|2 = 1 (3.15)

By allowing imaginary values for the weight factors, one can construct complex admixtures
to the order parameter symmetry, as is shown in the last two plots of figure 3.1. In general,
these complex admixtures differ from real admixtures by the absence of nodes and a phase
different from 0 or π. The functions for the linear combinations shown in figure 3.1 are

80% dx2−y2

20% s

}
4√
17
Z2

2 + 1√
17
Z0

0 (3.16)

50% dx2−y2

50% is

}
1√
2
Z2

2 + i√
2
Z0

0 (3.17)

50% dx2−y2

50% ipy

}
1√
2
Z2

2 + i√
2
Z−1

1 (3.18)

3.2.3 2D order parameter symmetry

The order parameter symmetry of the cuprate superconductors is usually described in two-
dimensional (kx,ky)-space. To describe the order parameter symmetry in two dimensions,
the spherical harmonics can be projected onto the 2D plane by setting the polar angle θ
to π/2. This will eliminate all solutions for which |m| 6= `, as can readily be seen from
equations (3.2) through (3.5). The `th Legendre polynomial (3.5) always has a highest
term of order x`. Thus for x = cos θ = 0 the associated Legendre function (3.4) can only
have non-zero solutions when |m| = `. More precisely,

Pm
` (0) =

{
(2`)!
2``!

|m| = `

0 |m| 6= `
(3.19)
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` m zm
` (ϕ) ∆(ϕ)

∆max

s 0 0 1√
2π

1
px 1 1 1√

π
cosϕ cosϕ

py 1 -1 1√
π

sinϕ sinϕ

dx2−y2 2 2 1√
π

cos(2ϕ) cos2 ϕ− sin2 ϕ

dxy 2 -2 1√
π

sin(2ϕ) 2 cosϕ sinϕ

fx(x2−3y2) 3 3 1√
π

cos(3ϕ) cosϕ(cos2 ϕ− 3 sin2 ϕ)

fy(y2−3x2) 3 -3 1√
π

sin(3ϕ) − sinϕ(sin2 ϕ− 3 cos2 ϕ)

Table 3.2: Two-dimensional order parameter symmetries for ` = 0, 1, 2, 3. Both the nor-
malized functions zm

` (ϕ) and the ratio of the superconducting gap ∆(ϕ) to its maximum
absolute value ∆max are tabulated.

The projection of the spherical harmonics (3.2) can thus be written as

Y m
` (ϕ,

π

2
) =

{
ε

2``!

√
(2`+1)!

4π eimϕ |m| = `

0 |m| 6= `
(3.20)

The projection has greatly simplified the basis functions: besides the normalization con-
stant (which will have to be redefined for the two-dimensional case anyway) we are left
with either a constant for the s-wave or eimϕ for higher-order symmetries. In analogy to
the derivation of the spherical harmonics Zm

` (ϕ, θ) in subsection 3.2.1 we can construct a
real set of orthonormal basis functions zm

` (ϕ) by using the sum and difference of Y m
` (ϕ, π

2 )
and Y −m

` (ϕ, π
2 ):

zm
` (ϕ) =


1√
2π

m = 0
1√
π

cos(`ϕ) m > 0
1√
π

sin(`ϕ) m < 0

(3.21)

This set of functions follows the normalization condition

2π∫
ϕ=0

zm
` (ϕ)zm′

`′ (ϕ)∗dϕ = δ``′δmm′ (3.22)

with δ the Kronecker delta. In table 3.2 the zm
` (ϕ) are displayed for the first four values

of the quantum number `.

3.2.4 Normalization of the 2D order parameter symmetry

In literature the order parameter symmetry in superconductors is mostly used in relation
to the superconducting gap ∆. Because the gap is proportional to the superconducting
order parameter it follows the same symmetry (therefore the order parameter symmetry
is also often referred to as the gap symmetry). This leads to a slightly different definition
of the symmetry functions. Instead of using normalized functions as used in the above,
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it is convention to define symmetry functions as the ratio of the superconducting gap to
its maximum absolute value ∆max ≡ max(|∆(ϕ)|). Thus the functional forms are still
the same as zm

` (ϕ), but they are ’normalized’ to have a maximum amplitude of 1. The
basis functions (expressed in terms of cosϕ and sinϕ) that follow from this convention
are listed in the last column of table 3.2.

A quick glance at table 3.2 reveals that it makes a big difference as to which convention
is used for the description of the order parameter. When considering the ’pure’ order
parameters there is no problem because the different symmetry functions only differ by a
proportionality constant. However, when considering admixtures there is an important
difference between the two sets of symmetry functions, because of the different ratio
of prefactors within each set. It can easily be shown that sin(`ϕ) and cos(`ϕ) have a
normalization constant of 1/

√
π for all `, so this difference only occurs for the s-wave

symmetry.
Also the coefficients when considering linear combinations will differ when using non-

normalized basis functions. When using the normalized functions zm
` (ϕ) any linear com-

bination Ω(ϕ) can be created, in analogy to equation (3.13), by using the coefficients in
equation (3.14). This ensures that Ω(ϕ) is also a normalized function in which the basis
functions zm

` (ϕ) are represented according to their weight factors. The convention in
literature for the admixtures is to use coefficients c†n that are proportional to the weight
factors wn and add up to 1

c†n =
wn

N∑
n=1
|wn|

(3.23)

As can be seen by comparing equations (3.14) and (3.23) this will only result in a different
proportionality constant (except, as mentioned above, for admixtures involving an s-wave
component). The obtained linear combination will not necessarily be normalized to 1,
however.

The choice to use normalized or non-normalized basis functions for the description
of the order parameter symmetry has serious consequences when considering admixtures
containing an s-wave and one or more higher-order symmetries. To illustrate these con-
sequences, let us consider the 50% s + 50% dx2−y2 gap symmetry. In figure 3.2(a) this
gap is constructed using non-normalized functions

∆(ϕ)
∆max

=
1
2

+
1
2

cos(2ϕ) (3.24)

In figure 3.2(b) the gap is constructed using the normalized functions zm
`

∆(ϕ)
∆max

=
1 +
√

2 cos(2ϕ)
1 +
√

2
(3.25)

It is clear that the choice of basis functions has a significant effect on the resulting interpre-
tation of the gap symmetry. To prevent ambiguous interpretations such as that presented
in the example above, it is imperative that the convention used for the construction of
such admixtures is clear. Though one could argue that using normalized functions is a
’cleaner’ approach, we will follow the convention used in literature and from this point on
use the non-normalized basis functions shown in the last column of table 3.2.

In figure 3.3 the amplitude and phase of several symmetry functions are plotted. The
polar plots of these functions have also been added for clarity. The functions shown are the
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Figure 3.2: Graphical representation of a 50% s + 50% dx2−y2 symmetry using (a) Non-
normalized symmetry functions (b) normalized symmetry functions, as mentioned in the
text. Solid lines: amplitude, dotted lines: (relative) phase.

s-, p-, and d- wave symmetries and (complex) admixtures to the dx2−y2-wave symmetry
(80% dx2−y2-wave and 20% admixture). The last two figures display the somewhat exotic
anisotropic s-wave and extended s-wave, which can be written as2

anisotropic s-wave:
∆(ϕ)
∆max

=
(

1− ∆min

∆max

)
cos4(2ϕ) +

∆min

∆max
(3.26)

and

extended s-wave:
∆(ϕ)
∆max

=
(
1 + γ2

)
cos2(2ϕ)− γ2 (3.27)

respectively. The anisotropic s-wave was proposed in 1993 by Chakravarty et al. as a
possible gap symmetry which followed from a model based on a tunnelling mechanism
between the copper-oxygen planes in the cuprate superconductors [106]. At that time, no
phase-sensitive experiments had been performed and the model seemed consistent with
the then available angle-resolved photoemission spectroscopy (ARPES) measurements. It
is now widely accepted that indeed there is a sign change between perpendicular directions
in k-space and the idea of anisotropic s-wave has been abandoned at least for the cuprate
superconductors.

The extended s-wave symmetry was proposed around the same period by scientists
who believed that the strong suppression of the order parameter along the (2n+1)45◦

directions (n being an integer) would lead to a sign change in the order parameter for a
range of angles along those directions. Like with the anisotropic s-wave, this concept has
been abandoned now.

The names anisotropic- and extended s-wave are a bit unfortunate considering the
fact that s-wave is normally used for the isotropic component of a symmetry function.
Moreover, this nomenclature is also completely unnecessary, because any symmetry func-
tion can be expressed as a linear combination of the symmetry functions (3.21). For the
extended s-wave symmetry, for example, also the more appropriate name s+g-wave is
used, where the s-wave indeed represents the isotropic part.

2These functions were adapted from Van Harlingen [103], who uses yet another convention to describe
the order parameter symmetry, which will not be discussed here
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Figure 3.3: (a) s-wave, (b) px-wave, (c) py-wave, and (d) dx2−y2-wave gap symmetries.
Left: polar plots, right: amplitude (solid lines) and relative phase (dotted lines).
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Figure 3.3: (continued) (e) dxy-wave, (f) dx2−y2+s-wave, (g) dx2−y2+is-wave, and
(h) dx2−y2+ipx-wave gap symmetries. The ratio d-wave : admixture is 80% : 20%.
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Figure 3.3: (continued) (i) dx2−y2+idxy (the ratio d-wave : admixture is 80% : 20%),
(j) anisotropic s-wave (∆min = 0.2∆max), and (k) isotropic s-wave (γ = 1/

√
2).

3.3 d-wave-induced π-phase shifts

The pairing symmetry in YBCO is widely believed to be predominantly dx2−y2-wave3.
The d-wave symmetry results in a maximum gap amplitude along the main crystal axes
and a strong suppression in the nodal directions (2n+1)45◦. Moreover the phase difference
between orthogonal directions is π and it is exactly this property which can be exploited
to realize rings with an intrinsic π-phase shift. A ring made out of pure single crystalline
YBCO will not suffice, however, because for such a ring the wavefunction will experience
a 0-π transition four times when going around a closed loop, where an odd number

3For the present discussion possible admixtures to this symmetry are neglected, though in chapter 5
this issue will be readdressed
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Figure 3.4: Schematic representation of (a) a π-ring and (b) a corner junction.

is required to obtain a π-ring. To exploit the d-wave symmetry for the spontaneous
generation of half-integer flux quanta, superconducting structures have to be engineered
such that the ’0-lobe’ of a superconductor is connected to the ’π-lobe’ of another.

The first experimental realization of the half-integer magnetic flux quantum effect in a
controlled geometry was by Tsuei et al. in 1994, through the use of tricrystals [104, 107].
In these samples a YBCO film was deposited on a tricrystal substrate and a three-junction
ring was patterned around the tricrystal intersection. For reference, two control rings were
defined across two bicrystal lines and one control ring was patterned on a single crystalline
part of the substrate. The different relative orientations of the substrate are adopted by
the crystal structure of the epitaxially grown YBCO film, and are such that the ring at
the tricrystal intersection experiences an odd number of 0-π transitions. The sample was
imaged using scanning SQUID microscopy (which will be discussed in section 5.5) and a
spontaneously generated flux corresponding to a half-integer flux quantum was observed
in the π-ring whereas no flux was observed in the control rings. This experiment has also
been conducted on plain (unstructured) films, where a half-integer magnetic flux quantum
was observed at the tricrystal intersection [104, 108–111].

A disadvantage of the tricrystal technique is the fact that only one half-integer flux
quantum can be generated per sample, and that its position is fixed by the tricrystal
intersection. Moreover the alignment of the central ring is by no means a trivial task and
the tricrystal rings are relatively expensive. For most applications a more flexible method
to generate the half-integer flux quantum is desirable. By connecting a conventional
(s-wave) superconductor to a d-wave superconductor the intrinsic π-phase shift can be
obtained in a much easier way. This technique has been used in several phase-sensitive
experiments, for example by Wollman et al. [112, 113], Brawner and Ott [114] and
Mathai et al. [115]. In 2003, Hilgenkamp et al. employed this technique to demonstrate
the first arrays of half-integer flux quanta [116]. The hybrid superconductors can be used
to fabricate π-rings and so-called corner junctions, which will be shortly discussed in the
following sections.
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Figure 3.5: Scanning SQUID microscopy images of (a) a 2D array of corner junctions
which have been manipulated to form the words ’IBM+UT’ and (b) a zigzag junction.

3.3.1 YBCO/Nb π-rings

The concept in its most basic form is sketched in figure 3.4(a). By making use of two
different order parameter symmetries, the ’0-lobe’ and the ’π-lobe’ of the d-wave super-
conductor YBCO can be directly connected via the s-wave superconductor niobium. This
results in an intrinsic π-phase shift (which is picked up in the YBCO) for any closed path
around the loop. As was discussed in section 2.10, when such a ring is in the large in-
ductance limit, its ground state is characterized by a spontaneously generated current
corresponding to a half-integer flux quantum of positive or negative polarity. The fabri-
cation of these hybrid rings requires special junctions in order to connect the two types
of superconductors, which is an art in itself. A discussion of the design- and fabrication
considerations of these junctions is given in section 4.4. The precise geometry of hybrid
YBCO/Nb rings has large consequences for the ring characteristics. For example, the ring
in figure 3.4(a) has its first junction angle at 90◦ and its second junction angle at 180◦

and is a π-ring. However, if the first junction angle had been at 0◦ the ring would have
been a standard 0-ring. The transition point lies near the nodal angle of 45◦ and depends
strongly on the precise details of the YBCO order parameter symmetry. Chapter 5 is
completely dedicated to exactly this phenomenon.

3.3.2 YBCO/Nb corner junctions

When the hole of the ring is made smaller and smaller until it eventually vanishes, what
remains is a so-called corner junction, which is depicted in figure 3.4(b). A fractional
flux quantum will form in a corner junction when the facet length, which is labelled a in
figure 3.4(b), is longer than the so-called Josephson penetration depth, or λJ (7.13). A
more thorough description of corner junctions in terms of the sine-Gordon equation will
be given in subsection 7.2.1. Samples containing up to 75.000 working π-rings (150.000
junctions) on a single chip have already been fabricated and used as a model spin sys-
tem [117, 118]. Also the controlled manipulation of half-integer flux quanta through the
application of a local magnetic field has been demonstrated in corner junctions as can be
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seen from the scanning SQUID microscopy image in figure 3.5(a).
One special type of corner junction that should be mentioned here is the so-called

zigzag junction. Zigzag junctions are a special type of corner junction: they consist
of multiple corners arranged as a staircase. When the facet length is larger than the
Josephson penetration depth these corners contain antiferromagnetically coupled half-
integer flux quanta. A scanning SQUID microscopy image of a zigzag junction is depicted
in figure 3.5(b). Chapter 7 of this thesis is devoted to the controlled manipulation of the
flux polarities in a double corner junction though the application of a bias current.

3.4 Summary

One of the more striking differences between the conventional superconductors and the
cuprates is the symmetry of the order parameter. In this chapter we have discussed the
concept of order parameter symmetry. Starting with the spherical harmonics, several
symmetry functions which are commonly used were presented, both for two- and three-
dimensional waveforms. It has been shown how high-Tc and low-Tc superconductors can
be combined to fabricate structures with intrinsic π-phase shifts, originating from the
d-wave symmetry of the high-Tc superconductors. In these rings a flux corresponding
to ±Φ0/2 can arise spontaneously, i.e. without any applied current or magnetic field.
Whereas this chapter was mainly concerned with the principles which lead to the half-flux
quantum effect in high-Tc/low-Tc structures, in the next chapter the practical realization
of such devices will be discussed. It should be mentioned that the half-flux quantum effect
is by no means limited to hybrid superconducting structures such as the ones discussed
in this thesis. The same result can in principle be obtained by any technique capable of
inducing a π-phase shift in a superconducting ring.
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Chapter 4

Experimental realization of
High-Tc/Low-Tc devices

4.1 Introduction

This chapter is concerned with the fabrication of devices which combine the high-Tc

cuprate superconductor YBCO and the low-Tc superconductor niobium. Even though
superconductivity in these materials may rely on completely different principles, rings
combining high-Tc and low-Tc superconductors exhibit fluxoid quantization (2.31) and the
contacts between the superconductors satisfy the Josephson relations (2.24) and (2.26).
Interestingly, as was discussed in the previous chapter, in such rings the difference in
order parameter symmetry can be exploited in order to obtain spontaneously generated
magnetic half-integer flux quanta, which may be used for fundamental studies or the
development of novel circuit elements in superconducting electronics. In this chapter the
YBCO/Nb devices are considered more from a materials science point-of-view. Some
general aspects of the materials themselves are discussed, followed by a review of the
used thin-film processing technology.

4.2 YBa2Cu3O7−δ

Yttrium barium copper oxide (YBCO) exists in several stoichiometric phases, such as
YBa2Cu3O7−δ (Tc=93 K), YBa2Cu4O8 (80 K), and Y2Ba4Cu7O14+x (95 K) [119–121].
The 123 phase of YBCO is most often used because it is easier to fabricate. In fact, since
its discovery in 1987 [4] YBa2Cu3O7−δ has been widely recognized as the ’workhorse’ in
the field of high-Tc superconductivity. The crystal structure of the 123 phase is depicted
in figure 4.1(a). The structural and electronic properties of YBCO1 are strongly related
to the oxygen deficiency [122]. For YBa2Cu3O6 (δ = 1) the crystal structure is tetragonal
(spacegroup P4/mmm): the a- and b crystal axes are equal but differ from the c-axis.
Four oxygen atoms are located in the two copper-oxide planes and two more atoms are
surrounding the two barium atoms. The sites in the ab-plane (at the top and bottom
of the unit cell in figure 4.1) are empty for δ = 1. With increasing oxygen content the

1Throughout this thesis, YBCO will refer to the 123 phase, i.e. YBa2Cu3O7−δ
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Figure 4.1: (a) Schematic representation of the unit cell of YBa2Cu3O7−δ. The oxygen
sites at the top and (equivalently) bottom of the unit cell, indicated with a slight trans-
parency, can be separated in two pairs: the O1 sites are located on the b-axis and the O5
sites are located on the a-axis. (b) Occupancy of the O1 and O5 sites as a function of the
oxygen content 7− δ (figure adapted from Jorgensen et al. [123]).

occupancy of these states increases and the oxygen divides evenly between sites that
are located on the a-axis (the O5 sites) and sites that are located on the b-axis (the
O1 sites). When 7 − δ reaches a value of approximately 6.35 a phase transition from
the non-superconducting tetragonal phase to the superconducting orthorhombic phase
occurs. For the orthorhombic crystal structure (space group Pmmm) the a-, b- and c axes
are all different. When the oxygen content 7−δ is increased even further the occupancy of
the O1 sites increases but the occupancy of the O5 sites starts to decrease, as indicated in
figure 4.1(b) [123]. When δ reaches its minimum value 0 for YBa2Cu3O7 the oxygen has
vanished from the O1 sites and the O5 sites are fully occupied, resulting in the formation of
so-called CuO-chains in the b-axis direction. The cell constants and critical temperature
of YBCO depend strongly on the oxygen deficiency. Though early studies seemed to
suggest a plateau in the doping-dependence of Tc for δ < 0.2, later experiments provided
evidence for a maximum around δ = 0.13 [124–126]. All YBCO thin films described
in this thesis were at or close to optimal doping, resulting in a critical temperature of
approximately 92 K and cell constants a = 3.82 Å, b = 3.89 Å, and c = 11.65 Å.

Though the mechanism of high-Tc superconductivity is currently not understood, it
is generally believed that superconductivity in YBCO takes place in the copper-oxygen
planes (in fact, all cuprate superconductors contain one or more copper-oxygen planes
in the unit cell). There is some speculation about the role of the copper-oxygen chains
in superconductivity, though many scientists believe that these act as charge reservoirs
for the CuO2 planes [127–133]. The copper-oxygen planes are not perfectly flat but
are slightly buckled towards the Y3+-ion which has a smaller ionic radius (90 pm) than
the Ba2+ ion (135 pm) [134, 135]. Despite this buckling, superconductivity can still be
regarded as a 2D phenomenon, and for this reason it is very important that YBCO thin
films are grown epitaxially. The devices described in this thesis contain c-axis oriented
YBCO films that were epitaxially grown on SrTiO3 substrates. SrTiO3 has a simple cubic
crystal structure (space group Pm3m), and its lattice constant 3.905 Å matches well with
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Nb YBa2Cu3O7−δ Nb YBa2Cu3O7−δ

Tc (K) 9.25 93 κab (-) 1 125
λab (nm) 39 150 κc (-) - 5333
λc (nm) - 1600 ρab (µΩm) 0.152 3.3
ξab (nm) 38 1.2 ρc (µΩm) - 140
ξc (nm) - 0.3 ∆ (meV) 1.55 20

Table 4.1: Material properties of niobium and optimally doped YBa2Cu3O7−δ. Shown
are the critical temperature Tc, the London penetration depth λL, the coherence length ξ,
the Ginzburg-Landau parameter κ, the resistivity ρ, and the energy gap ∆ (in-plane). For
the anisotropic YBa2Cu3O7−δ in-plane and out-of-plane values are given, for the isotropic
only the in-plane value is shown.

the a- and b axes of YBCO. Several material properties of YBCO such as the London
penetration depth, coherence length and Ginzburg-Landau parameter are summarized in
table 4.1.

4.3 Niobium

With 9.25 K the low-Tc superconductor niobium has the highest transition temperature
of the superconducting elements. This high critical temperature allows for operation at
4.2 K, the boiling point of liquid helium. Niobium oxidizes easily to a variety of oxides,
capped by a thin Nb2O5 layer, which prevents further oxidation [136]. This natural Nb2O5

coating is dense, mechanically hard and stable. The melting point above 2000 K and low
diffusivity below 400 K result in long time stability and robustness to thermal cycling. All
these factors combined make niobium one of the most popular metallic superconductors.
The crystal structure of niobium is BCC (space group Im3m). The niobium films that were
used in our experiments consist of polycrystalline niobium (grain size ≈ 60-80 nm) which
is much easier to fabricate than the epitaxially grown YBCO. The Josephson contacts
between YBCO and niobium require some special attention, though. When pure niobium
and YBCO are brought into contact the niobium will oxidize at the expense of oxygen in
the YBCO. The degradation in these ’native barrier’ junctions is so high that the contact
is not able to support a supercurrent [137]. For this reason a thin layer of the chemically
inert Au is deposited between the two electrodes, as discussed in section 4.4. In table 4.1
several material properties of niobium are summarized. Niobium is the only elemental
superconductor which is type II, but with a Ginzburg-Landau parameter κ close to 1 it
is near the type I regime. Because niobium is isotropic only the ab value has been listed,
which is valid for any orientation.

4.4 Ramp-type Josephson junctions

The hybrid YBCO/Nb rings are connected via Josephson junctions. These connections
require special attention because of the nature of superconductivity in YBCO. As was
already mentioned superconductivity in the cuprate superconductors is generally believed
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to be a two-dimensional phenomenon, most probably taking place in the copper-oxygen
planes. Because of the suppressed gap in the c-axis direction planar junctions are not
suitable to connect the YBCO base electrode to the s-wave niobium counter electrode.
Studies to Josephson contacts between high-Tc and low-Tc superconductors revealed that
ramp-type Josephson junctions can be used to fabricate reliable junctions [137].

The cross section of a ramp-type Josephson junction is sketched in figure 4.2, where
the YBCO film is assumed to be c-axis oriented (i.e., with the CuO2 planes parallel to the
substrate). For this geometry, the ab-plane of the YBCO base electrode is aligned with
the niobium top electrode. Because of the YBCO d-wave pairing symmetry the coupling
will be the largest when the junction edge is aligned with the a- or b-axis of the YBCO
crystal structure.

The gold barrier is essential to obtain high-transparency YBCO/Nb junctions2. Its
primary function is to chemically separate the two superconductors. Transmission electron
microscopy (TEM) observations have shown that when niobium is directly deposited on
top of YBCO a 6-7 nm insulating NbOx barrier is formed at the YBCO/Nb interface [138].
The oxygen that is required for the oxidation of niobium is obtained from the neighboring
YBCO, resulting in a degraded YBCO layer near the interface. The deposition of a
thin layer of gold has been shown to prevent the chemical interaction between the two
superconductors, increasing the critical current density by orders of magnitude [138, 139].
Other barrier metals such as Ag or Pt have also been successfully implemented as a
chemical barrier [137]. A minimum gold thickness of 8 nm was experimentally found to
be required to ensure a good wetting of the junction interface [137].

The overlap, which was typically a few µm for the samples discussed in this thesis,
serves to compensate for small misalignments between the top- and bottom electrodes in
the direction of the current transport. The STO capping layer prevents current transport
in the c-axis direction, which is assumed to be negligible anyway because of the small
coherence length in this direction3. Therefore the size of the overlap, unlike for planar
junctions, will not have an influence on the junction critical current in this ramp-type
geometry. However, the overlap does act as a shunting capacitance which has STO as
the dielectric. This will be further discussed in subsection 7.4.1. During the design stage,
the overlap was always designed such that the niobium overlap has a smaller width (i.e.
the out-of-plane direction in figure 4.2) than the YBCO base electrode. This smaller
width serves to allow for small in-plane misalignment errors between the top- and bottom
electrodes in the direction perpendicular to current transport. Without this precaution a
misalignment would result in the formation of an unintended π-facet which could generate
unwanted flux (in the large facet limit) or reduce the critical current of the junction (in
the small facet limit).

A crucial step in the preparation of the ramp-type interface is the structuring of the
bevelled edge in the superconducting base electrode through argon ion milling. This
procedure can severely degrade the quality of the base electrode near the interface. High
resolution transmission electron microscopy studies on YBCO/Au interfaces clearly show
an amorphous layer with a thickness of approximately 1.5 nm which resides at the interface
between the high-Tc base electrode and the Au layer deposited at the freshly milled ramp
edge [140–142]. Energy dispersive X-ray (EDX) analysis of this layer revealed a copper

2Though strictly speaking it would be more appropriate to speak of YBCO/Au/Nb junctions, through-
out this thesis the ’Au’ will be dropped and the junctions are simply referred to as YBCO/Nb junctions

3The STO layer will often not be mentioned explicitly, but is silently assumed to be present when the
bottom electrode is referred to as ’YBCO’
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Figure 4.2: Schematic cross section of a ramp-type Josephson junction connecting the
high-Tc superconductor YBCO to the low-Tc superconductor niobium.

content of nearly zero and an Y:Ba atomic ratio close to 1:1, which was attributed to
preferential etching. Such an amorphous layer strongly suppresses the critical current
density of the Josephson junction. For this reason a restoring interlayer is deposited and
annealed in situ prior to the deposition of the gold barrier. This interlayer, with a typical
thickness of 7 nm, restores the surface and leads to clean, reproducible and well-defined
interfaces [143].

4.4.1 Definition of the junction area

Some electric properties, such as the critical current density jc or the RNA-product,
are defined with respect to the junction area. However, there is no clear consensus on
what area one is to use for the ramp-type geometry described in this section. The fact
that superconductivity in the cuprate superconductor YBCO takes place in the two-
dimensional (ab-oriented) CuO2 planes leads some scientists to the conclusion that the
junction area should be defined as the junction area perpendicular to current transport
in the cuprate superconductor. Other scientists are more inclined to use the area of the
physical junction barrier because of the s-wave nature of the niobium electrode and the
fact that the shortest path between the two electrodes is perpendicular to this area.

Often, the precise definition will not be of much importance because in most cases one
is interested in the critical current Ic. In a typical scenario the critical current density is
determined from a measurement of Ic and then used as a parameter to design junctions
with a specific critical current. Since this approach only relies on the relative junction sizes
the exact definition of jc will have no influence on the end result. For properties that rely
directly on the critical current density, such as the Josephson penetration depth (7.13),
the result will depend directly on the convention which is used.

4.5 Fabrication

This section is concerned with the practical realization of the YBCO/Nb ramp-type
Josephson junctions. We will briefly discuss the deposition techniques and conditions that
were used for the devices described in this thesis. Though we only describe YBCO/Nb
junctions, the fabrication process is not necessarily restricted to these materials. The
same facilities have been used to realize for example Nd2−xCexCuO4−y (NCCO)/Au/Nb,
YBCO/SrRuO3, and YBCO/La1−xSrxMnO3 junctions. Also preliminary experiments
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Figure 4.3: Processing steps for the fabrication of YBCO/Nb ramp-type Josephson junc-
tions. (a) Treated STO substrate. (b) Pulsed laser deposition of the YBCO-STO bilayer.
(c) Application of photoresist. (d) Patterning of photoresist. (e) Argon ion milling.
(f) Resist removal.
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Figure 4.3: (continued) Processing steps for the fabrication of YBCO/Nb ramp-type
Josephson junctions. (g) Pulsed laser deposition of the YBCO interlayer and gold barrier.
(h) Application of photoresist. (i) Patterning of photoresist. (j) Sputter-deposition of
niobium. (k) Lift-off. (l) Removal of redundant Au and YBCO.
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involving silver- or platinum barriers have been conducted. First the general fabrication
procedure will be outlined, then several processing steps will be discussed in more detail.

4.5.1 Fabrication procedure

The fabrication procedure is schematically illustrated in figure 4.3. After cleaning and
a surface treatment step a [001]-oriented YBCO film is epitaxially grown on the STO
substrate using pulsed laser deposition (PLD). During the same fabrication step an STO
layer is deposited on top of the YBCO film. Then a layer of resist is spun on the sample
in which the shape of the base electrode is patterned using optical lithography. Next the
parts of the bilayer that are not covered by resist are etched away using argon ion milling.
To ensure a well-defined ramp for all junction angles, the sample is rotated during etching
and oriented at an angle of 45◦ with respect to the argon ion beam. After the resist is
removed, a thin (∼7 nm) YBCO layer is grown (again using PLD) and annealed in order
to restore the ramp which has been damaged during the argon ion milling process. After
this restoration step the gold barrier is applied in situ, also using PLD. On top of the gold
layer a resist layer is spun in which the shape of the counter electrode is defined using
optical lithography. In the final deposition step niobium is sputtered onto the sample.
Lift-off is used to remove the resist and unwanted niobium. In the last step, the redundant
uncovered YBCO/Au layer is removed by argon ion milling.

4.5.2 Substrate treatment

All devices described in this thesis were fabricated on 10x5x1 mm3 SrTiO3 substrates,
because of the good lattice match between STO (lattice constant 3.905 Å) and YBCO
(lattice constants a = 3.82 Å, b = 3.89 Å) and the comparable coefficient of thermal
expansion (14 ·10−6/K for YBCO and 11 ·10−6/K for STO [144]). Considering the d-wave
order parameter symmetry in the YBCO base electrode, the junction-orientation with
respect to the underlying YBCO crystal lattice is of great importance in our experiments.
Thus a good alignment of the STO crystal structure with respect to the edge is highly
desirable. The substrates had an edge-alignment better than 1◦. Low-miscut (α < 0.1◦)
substrates were used for the experiments where twinning behavior was not of importance.
The experiments described in chapter 5, which require untwinned YBCO films, were
performed using samples with a miscut α of 1.10◦.

Before deposition of the first bilayer the STO substrates were cleaned and prepared
in order to obtain a smooth surface and reproducible fabrication circumstances. The
cleaning step involves immersing the substrates in acetone and ethanol for 10 minutes
using ultrasound. When required, micro-mechanical cleaning was performed. Next the
cleaned sample was immersed in demiwater for 10 minutes, also using ultrasound, in order
to form strontium-hydroxide:

SrO + H2O→ Sr(OH)2

The Sr(OH)2 is then removed by immersing the substrate in a buffered HF solution,
consisting of 12.5% HF and 87.5% NH4F. After rinsing the substrate in demiwater for a
few minutes the substrate is annealed for 90 minutes at a temperature of 950◦C under
an oxygen-flow of 200 l/h to allow surface recrystallization. Thus a TiO2-terminated
substrate is obtained with clearly visible terrace steps, as can be seen in the atomic
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Figure 4.4: AFM image of the step-edges on a treated SrTiO3 substrate.

force microscopy (AFM) image shown in figure 4.4. A more detailed description of the
termination process is given in Koster et al. [145].

4.5.3 Photolithography

For the optical lithography MICROPOSIT S1813 (Shipley) photoresist was used. After
distributing the resist uniformly such that it covers the entire surface, the sample is spun
for 30 seconds at 5000 rotations per minute, which results in a resist layer with a thickness
of approximately 1.2 µm. To harden the resist the sample is baked on a hotplate for 10
minutes at 100◦C. Next, the lithography-mask is carefully positioned over the sample in
order to ensure a good alignment of the structures to be patterned. In many experiments
only the alignment between different layers, required for proper interconnections between
the top- and bottom electrodes across the sample, is of importance. However, for the
experiments described in this thesis also the alignment of the YBCO base electrode with
respect to the STO substrate (and thus the underlying crystal structure) is of crucial
importance because of the d-wave pairing symmetry in YBCO. When mask and sample
are properly aligned, the sample is exposed for 5-10 seconds to UV light with an energy
density of 10 mW/cm2. After exposure the sample is developed in the NaOH-based
developer MICROPOSIT 351, which is diluted with demiwater (1 developer : 5 water).
The sample is developed for 60 seconds under constant stirring and then rinsed twice in
demiwater for 30 seconds and 60 seconds, respectively.

As was mentioned in the above, we use etching to structure the YBCO base electrode
and lift-off for the Nb top electrode. These two different techniques also require slightly
different resist-masks in the sense that for the etching mask resist is removed everywhere
except for the structures whereas for the lift-off mask the resist is removed only where
the structures are to be fabricated. This difference in resist-mask has led to two small
deviations in the lithography steps. For the lift-off mask the sample is spin-coated at 4000
rpm instead of the aforementioned 5000 rpm, which corresponds to a resist thickness of
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approximately 1.3 µm. Though the resist thickness is only a fraction thicker, we experi-
enced a much easier lift-off for this spinning speed4. The second modification has to do
with the fact that for our 10x5x1 mm3 substrates a substantial amount of resist builds up
at the corners and (though to a lesser extent) at the edges. This resist cannot be removed
using the nominal dose and for edge masks this can lead to islands of superconducting
material at the corners of the sample, which is of course highly undesirable. Moreover the
resist at the corners can reduce precision when the mask aligner is used in contact mode.
Since the dose that is required to remove this resist would overexpose the structures that
are of interest, the photolitography for an etch mask is performed in two steps. First the
sample is exposed through a mask that covers the entire sample except for the corners
and the edges, using a much higher dose (an exposure time of 2 minutes). Then the
sample is developed and the photolitography for the actual structures is performed using
the nominal dose. For lift-off masks this extra step is not included of course because it
would lead to a superconducting ring around the sample. However, for lift-off masks the
necessity to get rid of the extra resist is less high because the lift-off in itself will not be
hampered by the fact that the resist is thicker at the corners.

After the etching step the resist is removed by immersing the sample in acetone using
ultrasound for 5 minutes and then immersing the sample in ethanol, also for 5 minutes
using ultrasound. After the lift-off step the sample is also immersed in acetone and
ethanol, but without the use of ultrasound to spare the junction and avoid a release of
the gold, which is only weakly attached.

4.5.4 Pulsed laser deposition

The YBCO-, STO- and Au films were deposited using pulsed laser deposition. The pulses
were generated by a Lambda Physik Compex 205 KrF excimer laser (with a wavelength
of 248 nm and a 20-30 ns pulsewidth), and led via a mask, mirror and lens (focal length ≈
45 cm) into the deposition chamber. The mask contains several rectangular openings with
an effective window area of 98 mm2 which are projected onto the target in the deposition
chamber. The purpose of this mask is to achieve a more homogeneous distribution of
ablated material at the sample.

The deposition chamber is a homebuilt vacuum system in which several process pa-
rameters (pressure, temperature, background gas) can be tuned for optimal film growth.
The system is equipped with an etching chamber, which allows the user to perform sub-
sequent etching- and deposition jobs without having to break the vacuum. This extra
etching step (argon ion milling) is always performed just before the restoration of the
ramp, because then the YBCO at the ramp has been in contact with air and the solvants
used to remove the resist layer. A few etch pulses can be applied to clean the degraded
YBCO before the in situ deposition of the YBCO interlayer. The interlayer-concept has
been worked out in more detail by Smilde et al. [143]. The standard background pres-
sure of the system is ∼10−7 mbar, and the pressure of the background gasses can be
controllably varied between 10−4 mbar and 0.5 mbar using a combination of mass-flow
controllers and a variable valve.

In the following paragraphs, the pulsed laser deposition of the materials used for
the devices discussed in this thesis (YBCO, STO and Au) will briefly be discussed. A
summary of all deposition conditions can be found in table 4.2.

4The reported values for resist thickness have been taken from the data sheet and were not actually
measured
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YBCO STO Au

Fluency (J/cm2) 1.5 1.5 3.5
Energy (mJ) 96 100 100
Frequency (Hz) 4 4 4
Temperature (◦C) 780 740 100
Pressure (mbar) 0.25 0.10 0.22
O2-flow (ml/min) 25 10 -
Ar-flow (ml/min) - - 30
Deposition rate (Å/pulse) 1.0 0.64 1.8

Table 4.2: Deposition conditions for pulsed laser deposition of YBCO, STO and Au.

YBCO growth

Before the deposition can occur, the sample has to be brought to the right deposition
conditions in order to obtain the correct stoichiometry. The sample is mounted on a
heater and (after degassing the silver paint used to attach the sample to the heater)
loaded into the vacuum clock via a load-lock system. Then the sample is heated to a
temperature of 200◦C. When the background pressure drops below 7 · 10−7 mbar the
oxygen-flow and pressure are set to 25 ml/min and 0.25 mbar, respectively. When the
pressure is stable the temperature is slowly increased to the actual deposition temperature
of 780◦C with short stops at 450◦C and 600◦C.

When the sample is at the right deposition conditions first the target is cleaned by
performing a pre-ablation: for 2 minutes the laser is pulsed with a frequency of 10 Hz
and at the desired fluency (1.5 J/cm2 for YBCO) but a shutter is placed between the
plasma plume and the sample. After pre-ablation the same procedure is repeated with
the shutter open and at the desired frequency (4 Hz was used for the base electrode and
1 Hz for the interlayer).

STO growth and annealing

The deposition of the STO film is performed in situ after the deposition of the YBCO
base electrode, at slightly different deposition conditions (a temperature of 740◦C, an
O2-flow of 10 ml/min and a pressure of 0.10 mbar). After the STO deposition the sample
is annealed in an oxygen environment of 1 bar for 30 minutes at 600◦C and for 30 minutes
at 450◦C. After the annealing step the heater is switched off and the sample is allowed
to cool down even further. When the temperature has dropped below 100◦C the system
is pumped vacuum again and the sample can be taken out of the system. The same
annealing procedure was followed between the deposition of the YBCO interlayer and the
gold barrier.

Au deposition

The pulsed laser deposition of gold requires a much higher fluency (we use 3.5 J/cm2)
than the ablation of the oxide materials YBCO and STO, due to gold’s high thermal
conductivity and strong reflectance for UV-laser radiation [146]. At this fluency the ions
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in the plasma plume can reach kinetic energies up to several tens of eV [147]. These high-
energy ions can seriously damage the surface and structures deposited in earlier processing
steps when exposed to the sample directly. To reduce the speed of the incoming high-
energy particles the gold depositions were carried out using argon as a background gas.
A more detailed analysis of the deposition circumstances has been given by Smilde [137].
The argon was let into the system at a flow of 30 ml/min and at a pressure of 0.22 mbar.
The deposition temperature of 100◦C was chosen to ensure the same deposition conditions
for different runs. The pulsed laser deposited Au films often showed gold droplets, see
for example figure 5.2(b). This is a recognized problem, especially with the deposition
of metals [137, 148, 149]. Under the aforementioned deposition conditions the density of
these droplets was so low that the droplets were not considered a problem.

4.5.5 Sputter deposition of niobium

The deposition of niobium was performed in a Nordiko sputter system which has a back-
ground pressure of 10−7 mbar. Prior to the actual deposition the gold surface is cleaned
in situ during an RF sputtering step in which the shutter in front of the target is closed.
Thus no material is deposited but the sample surface is etched by the argon ions. The
pressure during this etching step was 1.3 · 10−2 mbar and the applied RF power 50W,
which induces a self-bias voltage of 310V. Under these circumstances the sample was
etched for approximately 1 minute which results in the removal of ∼1 nm Au [150].

After this cleaning step the actual niobium deposition is performed by DC sputtering
at a pressure of 7.3·10−2 mbar and DC voltage and power of 365 V and 250 W, respectively.
These process parameters result in a deposition rate of 80 nm/min. Before sputtering
directly on the sample the target is sputtered while a shutter is placed in front of the
sample in order to clean the target and reduce the partial pressure of oxygen through the
formation of niobium oxide.

4.5.6 Argon ion milling

Argon ion milling was used for the ramp definition and for the removal of redundant gold
and YBCO in the last processing step (the cleaning of the gold will be discussed in the
sputtering section). Before starting the etching process the system is pumped down to
a background pressure of approximately 5 · 10−7 mbar. Then argon gas is let in and the
actual etching is performed at a pressure of approximately 5 · 10−3 mbar using a beam
voltage and -current used of 500 V and 15 mA respectively. During the cleaning step
just before the interlayer deposition a soft-etch step is performed at 50 V and 5 mA. To
reduce sample heating all etching processes are performed in a pulsed mode: each pulse
the beam is off for 12 seconds and then on for 8 seconds. During the definition of the
junction ramp in the base electrode the sample is placed under an angle and rotated to
obtain a ramp in all directions.

The ramp-angle α is not uniquely determined by the angle β under which the sample
is etched, but also by the relative etching speeds of the resist and the material to be
etched. This is illustrated in figure 4.5. When the sample is etched during a time ∆t,
the material will be etched by an amount ΓM∆t, where ΓM is the etching speed of the
material that is etched. All points on the left-hand side of A will therefore experience
a vertical displacement of ΓM∆t sinβ. In the same way the resist will diminish by an
amount ΓR∆t sinβ with ΓR the etching speed of the resist. While the resist is retracting
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Figure 4.5: Schematic representation of the ramp definition using argon ion milling. The
dotted lines represent the resist- and material surfaces at the beginning and end of the
time interval ∆t as indicated in the text. The dashed lines represent the ’horizon’ of the
incoming argon beam at the corresponding times.

the ’horizon’ of the incoming argon beam moves from B to C, and the actual ramp is
formed between A and C. Now let us denote the horizontal distance between A and B
by ∆x1 and the horizontal distance between between B and C by ∆x2. From figure 4.5
it is easy to see that

tanα =
ΓM∆t sinβ
∆x1 + ∆x2

(4.1)

and

tanβ =
ΓM∆t sinβ

∆x1
=

ΓR∆t sinβ
∆x2

(4.2)

Substituting ∆x1 and ∆x2 from equation (4.2) into equation (4.1) we find

α = arctan
(

tanβ
1 + x

)
(4.3)

with

x ≡ ΓR

ΓM
(4.4)

the ratio of the etching speeds.
Equation (4.3) should be used with some caution. First, the above derivation is for a

stationary situation, while in the actual experiments the sample is rotated during ramp
definition to ensure a ramp in all directions. Secondly in our experiments the YBCO
in the base electrode is always covered with an STO top layer, which also acts as an
etching mask for the underlying YBCO. Interestingly, these two effects seem to have a
small effect on the ramp angle [151]. For the samples described in this thesis the etching
angle was 45◦, which, together with x = 2 [137] results in a ramp angle of 18.4◦.
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4.6 Summary

In this chapter the practical realization of YBCO/Nb superconducting structures has been
discussed. The properties of the cuprate superconductor YBa2Cu3O7−δ depend critically
on the oxygen deficiency. Niobium, on the other hand, oxidizes easily. To ensure high-
quality barriers a gold barrier is deposited to chemically separate the two electrodes.
The ramp-type geometry which is necessary for good transport properties in the ab-plane
has been discussed as well as the and the interlayer concept which significantly enhances
the junction transparencies. The different deposition and preparation techniques such as
pulsed laser deposition, sputtering, (rotating) etching and lithography have been briefly
described.
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Chapter 5

Angle-resolved determination
of the YBCO gap symmetry

5.1 Introduction

More than twenty years after the discovery of high-Tc superconductivity there is still
no theory that can satisfyingly explain all experimentally observed phenomena. In the
process of trying to unravel the mysteries of high-Tc superconductors pieces and bits
of the puzzle have been identified and attempts are made to fit them into a single co-
herent and consistent theory. One of these pieces is the order parameter symmetry of
the wave function in the cuprates. The initial debate of s-wave versus d-wave pairing
symmetry has been settled in favor of a predominantly d-wave symmetry by a variety of
techniques [103, 104]. For YBCO some controversy still exists over the size of the in-plane
gap asymmetry and the possibility of broken time reversal symmetry. Studies on the or-
der parameter symmetry can roughly be divided in phase-insensitive techniques such as
angle-resolved photoemission spectroscopy (ARPES), Raman scattering and nuclear mag-
netic resonance (NMR), and phase-sensitive techniques such as SQUID interferometry and
tricrystal magnetometry. The first techniques provide information about the amplitude of
the order parameter, and can for example identify nodes in the pair wave function. To get
a complete picture of the pairing symmetry phase-sensitive experiments are also necessary.
Previous phase-sensitive experiments were performed in a limited number of geometries,
whereas experiments performed as a function of the in-plane momentum are desirable if
one is to demonstrate an imaginary admixture to the order parameter [152, 153].

5.2 Amplitude-sensitive experiments

Several theoretical studies have predicted that the orthorhombicity of the YBCO unit cell
should result in an s-wave admixture to the predominantly dx2−y2-wave order parameter
symmetry [154–158]. The addition of an s-wave admixture creates an anisotropy in the
d-wave symmetry. This can be understood intuitively by realizing that the constant
amplitude of the s-wave adds in phase to one pair of lobes, and out-of-phase to the other
pair of lobes. In other words, the s-wave adds to the blue (0-phase) lobes and subtracts
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Figure 5.1: (a) Layout of the sample used for angle-resolved electron tunnelling measure-
ments. (b) IcRN -product as a function of the angle with respect to the b-axis θ. Solid
points represent the measured data and the line is the fit as described in the text (figure
adapted from Smilde et al. [166]).

from the red (π-phase) lobes in figure 3.1. The anisotropy is often expressed as the ratio
of the gap values in the a- and b-direction, ∆b/∆a.

Experimental evidence for the predicted s-wave component has been found by several
groups using a variety of techniques. Tunnelling experiments by Polturak et al. [159] and
Engelhardt et al. [160] show an in-plane anisotropy of ∆b/∆a = 1.48 and ∆b/∆a = 1.2−2,
respectively (where we have assumed that the larger gap corresponds to the b-axis di-
rection and not to the a-axis direction as stated in the respective papers). Interest-
ingly, these measurements are in sharp contrast to tunnelling experiments performed by
Wei et al. [161], who place an upper limit to any s-wave component (real or imaginary)
of 5%, which corresponds to ∆b/∆a ≈ 1.1. ARPES measurements [162] show a substan-
tial gap-anisotropy of ∆b/∆a = 1.5, whereas in Raman scattering experiments a much
smaller value is observed: ∆b/∆a = 1.1 − 1.2 [162–164]. Measurements on the thermal
conductivity of YBCO in a rotating magnetic field [165] provided an upper limit on the
s-wave component of 10%, corresponding to ∆b/∆a = 1.25. It is safe to conclude that
the discussion about the magnitude of the s-wave component is far from settled.

The size of the s-wave admixture was also determined by Smilde et al. using angle-
resolved electron tunnelling [166]. The experimental layout of the sample is depicted
in figure 5.1(a)1. The base electrode consists of a nearly circular YBCO polygon with
edge facets that change orientation from side to side by 5◦. Niobium leads contact the
base electrode via YBCO/Nb ramp-type Josephson junctions. The critical current Ic and
the normal state resistance RN were probed as a function of the in-plane angle θ. The
resulting IcRN -product, which is directly related to the superconducting gap [167], is
shown in figure 5.1(b). The IcRN (θ) dependence was best fitted by an order parameter
symmetry consisting of 83% dx2−y2-wave, 15% isotropic s-wave and 2% anisotropic s-
wave.

1Note that the graphical representation of the d-wave clover as a 3D object was chosen for artistic
reasons. One should keep in mind that the order parameter symmetry of the cuprates is generally accepted
as being two-dimensional in nature
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Figure 5.2: (a) Schematic of the YBCO/Nb rings used for the phase-sensitive determi-
nation of the order parameter symmetry of YBCO. (b) Scanning electron microscopy
(SEM) picture of the YBCO ’island’ which is contacted by the niobium counter electrode
via two Josephson junctions. (c) SEM picture of the ramp-type junction between YBCO
and niobium. (d)-(f) Optical micrographs of superconducting YBCO/Nb rings in three
different geometries. The angle of the first junction is fixed at an angle θ1 = 0 degrees.
By tuning the angle θ2 of the second junction the ring can be (d) a 0-ring, (e) a ring that
can either be a 0- or a π-ring, depending on the details of the YBCO gap symmetry, or
(f) a π-ring.

5.3 Phase-sensitive experiments

Angle-resolved phase-sensitive experiments as proposed by Beasley et al. [152] and Ng
and Varma [153] have until now only been performed with limited success [168, 169].
We have used the half-integer magnetic flux quanta that arise in π-rings as a tool to
study the pairing symmetry of YBCO [170]. The layout of the rings that were used is
depicted in figures 5.2(a)-(c). The ring connects a YBCO base electrode to a niobium
counter electrode via two ramp-type Josephson junctions. Depending on the geometry
such a ring can be either a 0-ring which contains a flux nΦ0, or a π-ring containing a
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flux (n + 1
2 )Φ0 (provided the ring is in the large inductance limit). This is illustrated in

figures 5.2(d)-(f). For a predominantly d-wave pairing symmetry the rings (d) and (f)
will be a 0- and π-ring, respectively, but the behavior around the nodal directions depend
critically on the details of the order parameter symmetry. For a pure d-wave supercon-
ductor, for example, the transition from a 0- to π-ring occurs at an angle of 45 degrees.
An s-wave admixture will not only cause an anisotropy of the lobes along the a- and b-
directions (see section 3.2), but also shifts the nodal angles, resulting in a shift of the 0-
to π-transition. Moreover, an imaginary component to the order parameter symmetry
will result in a deviation of the spontaneously generated flux from Φ0/2, even in the large
inductance limit.

An array of 72 rings was fabricated with one junction kept at a constant angle and the
second junction angle varying in intervals of 5 degrees. By measuring the flux produced by
each of these rings using a scanning SQUID microscope (SSM) the in-plane gap symmetry
of YBCO can be probed. The rings were fabricated using the procedure described in
section 4.5. The YBCO-STO bilayer has a thickness of 340 nm (YBCO) + 70 nm (STO).
The choice for a rather thick YBCO layer was made to enhance the critical current. The
critical current of the junctions along the nodal directions will be strongly suppressed.
A thick YBCO layer will result in larger critical currents and therefore helps to stay in
the large inductance regime, which is crucial for this experiment. The thickness of the
gold is 16 nm and the niobium counter electrode has a thickness of 160 nm. The YBCO
semi-rings have an inner radius of 15 µm and an outer radius of 65 µm, the niobium rings
have an inner radius of 20 µm and an outer radius of 60 µm. The YBCO semi-rings were
chosen wider than the niobium semi-rings to ensure a single straight junction: a corner
in the YBCO under the niobium overlap results in a corner junction, which in turn can
result in a spontaneously generated current (see section 3.3). The 72 rings are spaced
by 400 µm in a square array. Using the inductance extraction program FastHenry [171]
and the London penetration depths from table 4.1 we estimate a self-inductance of 57 pH
and a nearest neighbors mutual inductance of 20 fH. The critical current of the junctions
in the rings was estimated from measurements on control junctions that were on the
same chip. These junctions, having the same width (40 µm) as the junctions in the rings
and oriented along the YBCO main crystal axes, had critical currents of 2.5 mA. From
these values we find a screening parameter βL ≈ 433, which is far in the large inductance
regime.

5.4 Twinning

An important aspect for our experiment is the amount of twinning in the YBCO thin
films. During film growth the orthorhombic YBCO unit cells align the diagonal of the
basal plane with respect to the diagonal of the underlying cubic crystal structure of the
strontium titanate substrate. The four different orientations that can be achieved this
way can be divided in two twin pairs, denoted by [S+

1 ,S−2 ] and [S−1 ,S+
2 ]. S+

1 and S−2 as well
as S−1 and S+

2 are correlated by a reflection in a (110) plane, while S+
1 and S+

2 as well as
S−1 and S−2 can be transferred into each other by a rotation through 90◦. The difference
in orientation between S+

1 and S−1 or S+
2 and S−2 respectively is given by [172]

2δ = 2arctan
(
b

a

)
− 90◦ (5.1)
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Figure 5.3: (a) Substrate vicinal properties: the angle α and in-plane orientation β of
the miscut. (b) Reciprocal space mapping of the YBCO 304 reflection for a fully twinned
sample. Reciprocal space mappings of the (c) 034- and (d) 304 reflections of a sample
that was used for the angle-resolved determination of the in-plane gap of YBCO.

with a and b the in-plane lattice constants. Inserting the values a = 3.82 Å and b = 3.89 Å
this gives 2δ ≈ 1.04◦. The ratio of the two twin pairs is referred to as twinning. In fully
untwinned thin films only one twin pair occurs, whereas in twinned films both twin pairs
occur, culminating in a 50%-50% population for fully twinned films.

A strong correlation between the substrate vicinal properties, shown in figure 5.3(a),
and the amount of twinning in YBCO films grown on STO by pulsed-laser deposition
has been demonstrated experimentally [173, 174]. For substrates with step edges oriented
along the [100] crystallographic axis (β = 90◦) a maximum in detwinning has been ob-
served for a miscut angle α of 1.10◦. This angle corresponds to a terrace length of 20
nm, which is comparable to the diffusion length of PLD-grown YBCO. The experimental
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determination of the in-plane gap of YBCO relies heavily on the asymmetry in the a-
and b-axis directions of YBCO. Monocrystalline films are therefore highly desirable: even
though the orthorhombic unit cells in themselves are non-isotropic, twinning will average
out the effect this has on the superconducting properties of the film as a whole. Therefore
the STO substrates that were selected for this experiment have a miscut angle α of 1.10◦

and are aligned with respect to the [100] axis within an accuracy of 0.5◦, which has been
confirmed by X-ray analysis.

The twin behavior in our YBCO films was determined using X-ray reciprocal space
mapping. Scans were performed around the 304 and 034 reflections. For comparison, a
typical reciprocal space mapping of the 304 reflection of a fully twinned sample is shown
in figure 5.3(b). In this figure one can clearly distinguish four maxima corresponding to
the four orientations discussed previously. The reciprocal space mappings of the YBCO
304 and 034 reflections of one of our samples are shown in figures 5.3(c) and 5.3(d) and
show almost completely untwinned YBCO thin films. The bottom half of figure 5.3(c)
and the right half of figure 5.3(d) correspond to the same twin pair which is clearly
dominant. In general, the inner reflections (small H for the 304 reflections and small K
for the 034 reflections) have a lower intensity than the outer reflections. This is consistent
with the fact that the reflections of the minority twin directions are only distinguishable
in figure 5.3(d).

5.5 Scanning SQUID microscope

Magnetic imaging of the samples was performed at the IBM T.J. Watson Research Center
in collaboration with Dr. John Kirtley, employing a high-resolution SSM [175, 176]. In
scanning SQUID microscopy the local magnetic field distribution is registered by probing
a SQUID over the surface of the sample that is to be measured. The advantage of scanning
SQUID microscopy with respect to other techniques is the high sensitivity of the SQUID,
the most sensitive magnetic field sensor currently available. The spatial resolution of the
scanning SQUID microscope used is approximately 6 µm [86], which is sufficient for our
purposes.

A schematic overview of the SSM system is shown in figure 5.4(a). The frame con-
taining the microscope is mounted on top of a mu-metal shielded liquid Helium Dewar
in which the microscope is immersed for measurements at cryogenic temperatures. The
movement of the scan head (containing the sample) over the SQUID stage is induced
by the X- Y - and Z linear actuators located at the top of the setup. The movement is
transferred from the linear actuators outside the cryostat to the sample via a pivoting
principle.

In figures 5.4(b) and 5.4(c) optical micrographs of the SSM sensor are shown. The
sensors were fabricated at Hypres using a conventional Nb-AlOx-Nb trilayer process. The
sensor consists of a SQUID which is connected to a pick-up loop coupled inductively to
a modulation coil for operation in a flux locked loop. The SQUID washer and the pick-
up loop are separated by 1.2 mm long magnetically shielded leads. The separation of
pick-up loop and SQUID washer has the advantage that the pick-up loop can be made
much smaller than the SQUID, whose dimensions are limited by the available junction
technology. The miniaturization of the pick-up loop results in a better spatial resolution
and lowers the back-action of the SQUID. The sensor that was used had a square pick-
up loop of 8 × 8 µm2 with a calculated effective pick-up area of 85.3 µm2 at 4.2 K. To
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Figure 5.4: (a) Schematic of the IBM scanning SQUID microscope setup. (b) Optical mi-
crograph of the SQUID pick-up loop. (c) Optical micrograph of the SQUID. (d) Schematic
of the scan head and the SQUID stage.

decrease the spacing between sensor and sample the silicon substrate is polished to a
corner typically one loop diameter from the center of the pick-up loop.

A close-up of the scanner is shown in figure 5.4(d). The SQUID is attached to the end
of a thin brass cantilever which is brought in contact with the sample, making the system
robust to small variations in the longitudinal direction. The SQUID is positioned under
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an angle with respect to the sample such that the pick-up loop is closest to the surface.
This enhances the spatial resolution because most flux will be picked up by the pick-up
loop and moreover has the practical advantage that the bonding wires connected to the
SQUID (not shown) are not in contact to the sample that is measured. During the actual
measurements a coil (not shown) is placed around the scan area to compensate for stray
fields in the Dewar.

The SSM is operated in a flux locked loop at a modulation frequency of 100 kHz. The
output of the SQUID electronics is amplified and led to the data acquisition card of the
measurement computer. Fully automated imaging of the sample can be performed using
software that was developed specifically for this purpose at the IBM T.J. Watson Research
Center. The program drives the linear actuators to scan the area of interest while the
SQUID output signal is recorded. The noise of this system is typically 2 µΦ0/Hz1/2,
corresponding to a field noise at the pick-up loop of 40 pT/Hz1/2.

5.6 Measurement results

Results of the magnetic imaging are depicted in figure 5.5. In figure 5.5(a) a schematic
of one of the rings is shown, indicating the definitions of the different angles. The first
junction angle has the value θ1 = −22.5◦ in all rings of this sample. The angle θ2 is varied
in steps of 5 degrees between -17.5◦ and 332.5◦ for different rings. The angle θ of the
second junction normal, along which current transport takes place, is defined with respect
to the majority twin a-axis direction. Figure 5.5(b) shows a typical SQUID microscope
image of one of the π-rings, which was cooled and imaged in zero magnetic field and has
a full-scale variation of 0.04 Φ0 flux through the (sensor) SQUID. All measurements were
performed at 4.2 K. The spontaneously generated flux (corresponding to Φ0/2) is clearly
visible in the center of the ring, whereas the ring itself is nearly invisible.

Figure 5.5(c) shows the SSM images for all rings on this sample, organized as a polar
plot. The images are 150 µm by 150 µm in size and labelled by the angle of the second
junction normal with respect to the majority twin a-axis direction θ. The outer ring
of images was recorded with the sample cooled in zero field. These images have a full-
scale variation of 0.04 Φ0. Clearly, four regimes can be distinguished: in two regimes
the rings act as conventional 0-rings (no circulating currents), and in two regimes the
rings demonstrate a spontaneously generated flux corresponding to half a flux quantum.
The crossovers between 0- and π-rings are indicated by dotted lines and are positioned
between the angles θ = −42.5◦...-37.5◦, 37.5◦...42.5◦, 137.5◦...142.5◦, and 217.5◦...222.5◦.
Interestingly, these positions deviate from the (2n+1)45◦ positions that are to be expected
if YBCO has a pure dx2−y2-wave order parameter symmetry. The deviations cannot be
explained by a possible misalignment of the rings with respect to the STO substrate
(or equivalently, with respect to the YBCO crystal axes), because this would result in a
uniform rotation of all nodes, rather the observed dispersion.

Rings that are at the transition points have their junction normal oriented close to
a nodal direction in which the critical current is suppressed. This notion could lead
one to believe that those rings are actually still π-rings in the sense that they have
a built-in π-phase shift, but do not show the half-flux quantum because the screening
parameter βL of these rings is too small, as was discussed in section 2.10. For this reason
the sample was cooled down again but in a background field of 0.2 µT. Once cooled down
the magnetic field was removed and the rings were imaged again. The resulting SQUID
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Figure 5.5: (a) Schematic of a ring with the angles θ1, θ2 and θ defined. (b) Image of
the ring with θ2 = 167.5◦. (c) Polar plot of the SSM images for all rings, labelled by the
second junction normal angle θ. The outer circle of images, taken after cooling in zero
field, has a full-scale variation of 0.04 Φ0 flux through the SQUID. The inner ring, taken
after the sample was cooled in a field of 0.2 µT, has a full-scale variation of 0.09 Φ0. The
dotted lines indicate the angles at which the transition from 0- to π-rings occurs.
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microscope images, 150 µm by 150 µm in size and having a full-scale variation of 0.04 Φ0,
are displayed in the inner semi-circle of figure 5.5(c). The flux in the π-rings is still Φ0 but
the flux in the rings that showed no flux before is one or even sometimes two flux quanta.
This elegantly demonstrates that Ic is large enough and these rings are not π-rings.

To quantify the results of figure 5.5 the integrated flux for each of the rings is plotted
as a function of the junction normal angle θ in figure 5.6(a). In the following, the method
used to integrate the flux from the SSM images is explained. Each image consists of a
set of pixels, which have an x-, y- and associated N -value (which is converted to a color
scale), see figure 5.6(b). N is proportional to Φs, the flux detected by the sensor pick-up
loop for that particular pixel. To integrate the flux, first the values N are summed for all
pixels within a radius r from the center of the ring. The integration area is given by the
sum of all pixels times the area per pixel Ap. In figure 5.6(c), ΣN is plotted as a function
of the integration area (black solid points). In the absence of a background magnetic
field ΣN should increase with r until r reaches the inner radius of the ring, and then
remain constant until the outer diameter is reached. To compensate for constant offsets
in the SQUID signal ΣN is fitted to a straight line between an inner radius Rin and an
outer radius Rout, see figure 5.6(b) and the blue line in figure 5.6(c). Rin and Rout are
chosen well within the superconducting material. In figure 5.6(c) the resulting ΣN∗ after
background subtraction is shown (red solid points).

The flux through a ring is equal to the summation of Φp over all pixels within the
inner radius of the ring. Each pixel has an area Ap of 3× 3 µm2, which is determined by
the scan step size (3 µm for this experiment). However, N∗ is related to the flux through
the pick-up loop of the sensor Φs, with a different area As of 85.3 µm2, which should be
taken into account when integrating the flux. In general, the flux Φp through a pixel is
related to the flux through the sensor pick-up loop Φs via

Φp = Φs
Ap

As
(5.2)

The value N is determined from the flux Φs through the SQUID pick-up loop via the
flux-to-voltage transfer Φ-to-V of the flux-locked loop, the gain and an analog-to-digital
conversion step (16 bits for ±10 V). Combining this with equation (5.2) we find the
following relation between ΣΦp and ΣN∗

∑
r<Rin

Φp =
1

Φ-to-V · gain ·
(

216

20

) Ap

As

∑
r<Rin

N(r)∗ (5.3)

Inserting the values for the flux-to-voltage transfer (1.75 V/Φ0) and gain (50×), the
integrated flux ΣΦp can be directly calculated as a function of the integration area. The
result is shown in figure 5.6(d). Φring can be evaluated at any value of r between Rin

and Rout, as by construction it is constant within experimental noise between these values.

5.7 Interpretation

The apparent shift of the nodal positions is in agreement with an s-wave admixture to
a predominantly dx2−y2-wave order parameter symmetry. If we write the angular depen-
dence of the YBCO gap as ∆(θ) = ∆s + ∆x2−y2 cos(2θ), where ∆s is the s-component
and ∆x2−y2 is the dx2−y2-component of the in-plane gap, the nodal angle should satisfy
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Figure 5.6: (a) Integrated flux through the rings as a function of θ, the angle of the second
junction normal with respect to the majority twin-a axis (solid points). The dotted line
indicates the expected dependence of a pure dx2−y2-wave superconductor in the large
inductance limit. (b) SSM image for the -12.5◦ ring, showing the size of a pixel and the
inner- and outer radii used for background subtraction. (c) Integrated N as a function of
integration area. Black solid points: ΣN , blue line: fit between Rin and Rout, red solid
points: ΣN∗. (d) Integrated flux ΣΦp as a function of integration area.

the relation θnode = (1/2) arccos(−∆s/∆x2−y2). As the boundary between 0- and π-rings
occurs between 37.5◦ and 42.5◦, this implies that −0.26 < ∆s/∆x2−y2 < −0.09. This
should be taken as an underestimate of the gap anisotropy, as twinning would tend to
reduce the deviation of the nodal directions from (2n+1)45◦.

For a more quantitative analysis a new design was made with smaller increments (0.5◦)
of the junction angle around the nodal positions. A schematic of this design is shown in
figure 5.7(a). The dimensions of the ring are the same as that of the rings mentioned in the
previous section except for the junction angles. In the previous design the first junction
normal had an angle of 22.5◦ with respect to the main crystal axis, as suggested by Ng
and Varma [153], because in the case of a dx2−y2+idxy symmetry the phase changes sign
at multiples of 90◦. Since no considerable deviation of the spontaneously generated flux
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from Φ0/2 was observed, the imaginary dxy-wave component was considered negligible.
Samples according to the new design were fabricated and magnetically imaged. In

figure 5.7(b) the integrated flux as a function of the second junction normal angle with
respect to the majority twin a-axis θ is shown (solid points) and the scanning SQUID
microscopy images are depicted in figure 5.7(c). It should be noted that X-ray analysis
revealed that the in-plane orientation of the miscut with respect to the 5 by 10 mm2

STO substrate differs 90◦ with respect to the miscut orientation of the sample used in
the previous measurement. As a consequence the orientation of the rings with respect to
the a- and b YBCO crystal axes are interchanged, which explains why half-flux quanta are
observed in rings at angles θ that showed integer flux quanta in the previous experiments
and vice versa. Note that for this sample the junction angle θ2 and the junction normal
angle θ have the same value by definition, as can be seen from figure 5.7(a). A smooth
transition between no spontaneously generated flux and half-flux quanta can be observed
because of the small steps in θ.

In the following we try to quantify the order parameter symmetry by fitting the
measured data to the theoretical prediction. The fluxoid quantization condition (2.31)
for one particular ring reads

1
2π

(ϕ1 + ϕ2 + ε) +
Φs

Φ0
= n (5.4)

with the directions as defined in figure 2.10(a). ε is the phase difference between the two
junctions due to the order parameter symmetry (it will be 0 or π for a dx2−y2+s-wave
symmetry and have intermediate values when complex admixtures such as is, ip or idxy

are allowed). Φs is the self-generated flux as we consider the case of zero background
field. Writing the phases ϕ1, ϕ2 and the flux Φs in terms of the self-generated current Is
we find

arcsin
(
Is
Ic1

)
+ arcsin

(
Is
Ic2

)
+ ε+

2πLIs
Φ0

= 2πn (5.5)

where we consider only the first solution of (2.53). Normalizing all currents with respect
to the nominal junction critical current (which is assumed to be equal for both junctions)
and considering the n = 0 state equation (5.5) reduces to

arcsin
(
is
ic1

)
+ arcsin

(
is
ic2

)
+ ε+ βLis = 0 (5.6)

Given the junction normal angles θ1 and θ2, equation (5.6) can be solved for is using the
gap symmetry and βL as input parameters. Let us denote the superconducting gap ∆(θ)
as

∆(θ) = ∆re(θ) + i∆im(θ) (5.7)

with
∆re(θ) = ∆s + ∆dx2−y2 cos(2θ) (5.8)

and
∆im(θ) = ∆is + ∆ipx

cos θ + ∆ipy
sin θ + ∆idxy

sin(2θ) (5.9)

The junction critical current depends strongly on the orientation when considering an
anisotropic superconductor such as YBCO. To incorporate this behavior into our model
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Figure 5.7: (a) Schematic of a ring with the angles θ1, θ2 and θ defined. (b) Solid
points: integrated flux for the samples with small increments of θ around the nodal
angles. Solid line: best fit to the model as described in the text, obtained for a gap
symmetry ∆(θ) = ∆0[0.91 cos(2θ) − 0.09] and βL = 67. Dotted line: expected flux for a
gap symmetry ∆(θ) = ∆0[0.90 cos(2θ)− 0.10i sin(2θ)] and βL = 67. (c) Scanning SQUID
microscopy images for all rings, labelled by the second junction normal angle θ.

we use the Sigrist-Rice form [177] for the junction critical currents, in which the critical
currents are assumed to be proportional to the YBCO gap along the junction normal:

ic(θ) =

√
∆re(θ)2 + ∆im(θ)2

∆max
(5.10)
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With ∆max the maximum gap amplitude. The intrinsic phase drop ε(θ1, θ2) is simply the
difference between the arguments of ∆(θ1) and ∆(θ2), and can be written as

ε(θ1, θ2) = i ln
(

∆(θ1)
∆(θ2)

∣∣∣∣∆(θ2)
∆(θ1)

∣∣∣∣) (5.11)

For a given order parameter symmetry and screening parameter βL equation (5.6) can
be solved for is (and thus the flux Φ) for all rings. The resulting theoretical prediction for
the flux Φth is then compared to the experimentally determined values Φexp by minimizing

χ2 =
N∑

i=1

(Φth − Φexp)
2 (5.12)

with N the total number of rings (70). By changing the screening parameter βL and
the composition of the superconducting gap such as to minimize equation (5.12) we find
that the best fit is obtained for −0.12 < ∆s/∆dx2−y2 < −0.08 and 40 < βL < 150, using
a doubling of χ2 from its lowest value as a criterion for assigning parameter uncertain-
ties. The observed gap anisotropy is consistent with the value reported for the sample
with 5 degrees intervals for the second junction angle (−0.26 < ∆s/∆x2−y2 < −0.09).
The value for the screening parameter is quite different from the value that was estimated
in section 5.3: βL ≈ 433. However, as indicated by the large error margin, the fits are
quite insensitive to the value of βL for large βL and are highly sensitive to small system-
atic errors in the integration of the flux. The best fit was obtained for an order parameter
symmetry consisting of 91% dx2−y2-wave and 9% s-wave, indicated by the solid line in
figure 5.7(b). We observe no evidence for any imaginary component to the gap (is, ipx,
ipy, or idxy). This is illustrated by the dashed line in figure 5.7(b) which shows the ex-
pected flux for a 10% idxy admixture. The aforementioned model also sets an upper limit
of 2.5% to any complex admixture.

It is of interest to compare the observed anisotropy in the gap, ∆b/∆a = 1.2, to
the anisotropy in the YBCO unit cell constants: b/a ≈ 1.02. The gap anisotropy is
about an order of magnitude larger than the lattice anisotropy (20% versus 2%). This
may lead one to the conclusion that the observed gap anisotropy is not purely due to
the orthorhombicity of YBCO. The question what causes the gap anisotropy is closely
connected to the question what causes superconductivity in the cuprate superconductors.
Possible sources include energy bands of the CuO chains, which were already mentioned in
section 4.2 [178], or a Pomeranchuk instability which breaks the tetragonal symmetry of
the Fermi surface [179]. Insights into the relation between the origin of the gap anisotropy
and its relation to the underlying crystal structure may prove of crucial importance for
modelling high-Tc superconductivity.

5.8 Summary

In this chapter phase-sensitive experiments to study the order parameter symmetry of
the cuprate superconductor YBCO have been presented. Arrays of YBCO/Nb rings
containing two Josephson junctions have been fabricated and cooled down below the
transition temperature of niobium. One of the junctions was kept at a constant angle
while the other junction angle was varied for each ring. Depending on the junction
angle and the details of the YBCO order parameter symmetry spontaneously generated
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flux can occur in such superconducting rings. The rings were imaged using a scanning
SQUID microscope and from the angular dependence of the produced flux the pairing
symmetry in YBCO is found to have ∆s/∆x2−y2 ≈ −0.1, corresponding to a gap which
is at least 20% larger in the b-axis (CuO chain) direction: ∆b/∆a = 1.2. The same
anisotropy was also observed by Smilde et al. in the IcRN -product of similar YBCO/Nb
ramp-type Josephson junctions [166]. The gap anisotropy that was estimated from these
measurements however was slightly larger: a value of ∆b/∆a = 1.5 was calculated. The
experiments set an upper limit to any imaginary is- ip- or idxy admixture of 2.5%, which
indicates that broken time reversal symmetry is not likely to be associated with high-Tc

superconductivity in optimally doped YBCO.
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Chapter 6

Implementation of half-integer
flux quanta in RSFQ

6.1 Introduction

In chapter 3 we described how π-rings can be realized by combining the high-Tc supercon-
ductor YBCO and the conventional superconductor niobium. These π-rings are charac-
terized by the spontaneous generation of circulating currents corresponding to half a flux
quantum when cooled below the superconducting transition temperature. In chapter 5 we
presented how such rings were used for the angle-resolved determination of the in-plane
gap symmetry of YBCO. In this chapter we present the application of π-rings in supercon-
ducting digital electronics. The natural two-fold degenerate ground state corresponding
to a half-flux quantum of positive or negative polarity makes π-rings an excellent can-
didate for storage of binary information in superconducting information technology. We
present the first successful integration of π-rings in superconducting electronics through
the realization of a π-ring-based toggle flip-flop (TFF). The incorporation of π-rings leads
to improved device symmetry, higher fabrication yield, enhanced operation margins and
alleviates the need for bias currents.

6.2 RSFQ

Rapid single flux quantum technology (RSFQ) is a superconducting digital electronics
family that was first proposed by Likharev in 1985 [180–182]. In RSFQ, a bit is represented
by the presence (for the logic ’1’) or absence (for the logic ’0’) of a flux quantum in
superconducting loops. An essential element in RSFQ circuits is the Josephson junction,
which acts as a gate to transfer flux quanta between loops; it plays a central role in RSFQ
much like the transistor does for conventional semiconductor electronics. RSFQ combines
a high operation speed (potentially 100 GHz and higher) with low dissipation (typically a
few milliWatts), which causes some to believe that RSFQ is an attractive alternative for
conventional CMOS technology in a time where Moore’s celebrated law seems to come to
an end and the demand for higher computing capacity increases. Most superconducting
digital electronics devices are low-Tc circuits realized using a niobium-based fabrication
process (containing Nb/AlOx/Nb Josephson junctions), which has achieved rapid progress
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during the last years and is under constant development [17]. Circuits can nowadays be
ordered commercially from companies such as the HYPRES foundry or IPHT Jena.

RSFQ has already demonstrated its potential for high-frequency operation. To name
but a few accomplishments: a 4-to-1 demultiplexer containing over 500 Josephson junc-
tions that performed up to 56 GHz was realized by Furuta et al. [183]. Mukhanov et al.
demonstrated the correct operation of an RSFQ-based digital receiver system containing
approximately 11.000 Josephson junctions which operates at 30 GHz [184]. Yamanashi et
al. have realized a pipelined 8-bit RSFQ microprocessor containing over 10.000 Josephson
junctions and operating at 20 GHz with an estimated peak performance and power con-
sumption of 1400 million operations per second and 3.4 mW, respectively [185]. Work on
an improved version of this processor with cache memory, containing over 22.000 Joseph-
son junctions, is currently in progress [186]. H. Akaike et al. have demonstrated an SFQ
shift register circuit operating at frequencies exceeding 100 GHz [187]. The fastest RSFQ
logic cell ever measured is a toggle flip-flop operating at frequencies up to 770 GHz [188].
Though this high speed is also related to the lower complexity of this device, 770 GHz is
an impressive speed nonetheless (to make a comparison: a photon travelling at the speed
of light, c = 3.0 · 108 m/s, will travel less than 400 µm during one cycle).

Despite its large potential RSFQ is mainly a research activity and has no commercial
applications to date. This can be attributed to a number of factors, such as the high level
of integration of the established semiconductor industry (which roughly had a two decades
head-start) in current society, the lack of sustained funding to establish the needed in-
frastructure to make superconductor digital technology a viable commercial product, and
the need for a cryogenic environment [189]. Nevertheless, the advantage in performance
may well be sufficient to outweigh the cost and inconvenience of the required cryogenic
refrigeration for some purposes such as high-end computers, servers, and routers [190].
Moreover, much progress has already been booked in terms of cooling, for example the
availability of subKelvin cryogen-free coolers. Besides obvious efforts to increase cooling
power and lower the base temperature, current research interests include miniaturiza-
tion of cryocoolers, improvement of cryopackaging and a reduction of cooler interference
(which can be of a mechanical, electromagnetic or thermal nature) [191]. Combined with
an improved circuit design (optimized to lower the required cooling power) these efforts
may ultimately lower or remove the present barrier that cryogenic refrigeration poses.

6.2.1 Transfer of flux quanta

In RSFQ circuits, Josephson junctions act as gates that transfer binary data stored in the
form of magnetic flux quanta between superconducting loops. This process is illustrated
in figure 6.1. In figure 6.1(a) a schematic is given of two coupled superconducting loops
containing three Josephson junctions, which will be denoted by J1, J2 and J3 for the
left, right and middle junction, respectively. The loops are assumed to be in the large
inductance limit βL � 1 and one of the loops has stored one magnetic flux quantum. The
circuit diagram of the double loop is presented in figure 6.1(b). Following the conventional
notation in RSFQ the loops are represented by open loops connected to ground. It
is important to realize that all grounds are connected phase coherently (usually via a
superconducting ground plane). For simplicity the self-inductance L of the individual
loops and the critical currents Ic of the Josephson junctions are assumed to be equal and
the mutual inductance between the loops is neglected. The phase of the wavefunction θ
at the grounds and nodes is shown in red font for the initial situation. The values ε and
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Figure 6.1: (a) Schematic and (b) circuit diagram for two connected storing loops in the
large inductance limit (βL � 1) containing Josephson junctions. In the initial situation
the left loop contains one flux quantum and the right loop contains no flux. The phase of
the wavefunction θ is indicated in red font. (c) Simulation of a switching event. Top: the
current pulse that is applied at the node labelled A in figure 6.1(b), Middle: Voltage over
junction J3, Bottom: the flux in the left loop (solid line) and right loop (dashed line).
(d) Circuit diagram displaying the current- and phase distributions after the switching
event.

δ, given by

ε� δ ≈ 2π
βL
� 1 (6.1)

are chosen such that the Josephson relations (2.24)

I1 = Ic sin δ ≈ Icδ (6.2)
I2 = Ic sin ε ≈ Icε (6.3)
I3 = Ic sin(δ − ε) ≈ Ic(δ − ε) (6.4)

Kirchhoff’s law

I1 = I2 + I3 (6.5)
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and the fluxoid quantization condition (2.31)

2δ − ε+ βL
I1
Ic

= 2π (6.6)

2ε− δ + βL
I2
Ic

= 0 (6.7)

are satisfied. For the definition of signs, directions and dependencies of the phase θ, the
gauge invariant phase drop ϕ and the magnetic flux, refer to sections 2.6 and 2.71. The
fact that one of the grounds has a phase 2π whereas the others have a phase 0 merely
reflects the fact that for a single valued wavefunction Ψ the phase at any point is only
determined up to 2π, which is the basis of the fluxoid quantization condition.

Suppose a current source is connected to the node labelled A and ground and a short
current pulse exceeding Ic is given. Since junction J3 provides the smallest impedance
path to ground and it is already biased because of the circulating current this junction will
switch first (of course the precise details of how large the current pulse should be depends
on the circuit parameters). In terms of the pendulum analogon introduced in section 2.8
the current pulse corresponds to a quick jerk on the rope connected to the pulley block.
During the switching process the junction produces a transient voltage pulse and changes
its phase by 2π, which corresponds to the pendulum making a full rotation.

It should be noted that the bias due to the circulating current plays only a minor
role in this example: the phase drop δ − ε over junction J3 is considered to be much
smaller than one and thus the bias is much smaller than the critical current Ic. The main
argument why junction J3 switches first is therefore the large inductances that are in series
with junctions J1 and J2. For rings that are not in the large inductance limit, however,
the current bias from a flux quantum will be significant. The Josephson transmission
line (JTL), which will be discussed in subsection 6.4.2, is actually based on this principle.

The behavior of this system can be analyzed using the circuit simulator JSIM [192].
The result, calculated for junction parameters Ic = 50 µA, C = 0.5 pF and RN = 10 Ω
and loop inductances of 500 pH, is displayed in figure 6.1(c). In the top graph the applied
bias current pulse (85 µA for 5 ps) is depicted. The middle graph shows the voltage
over the switching junction. The Stewart-McCumber parameter (2.39) for the junctions
is approximately 7.5 so this junction is underdamped2. The period of the oscillations
corresponds to 2π/ωp = 11.4 ps with ωp the plasma frequency (2.34). The oscillations
decay as e−t/2RN C , with an RC-time of 5 ps. In the bottom graph the flux in each of the
loops is shown as a function of time. With a screening parameter βL=76 the loops are in
the large inductance limit.

During the switching event, a flux quantum is transferred from the left loop to the
right loop, which follows directly from the 2π phase shift that occurs during the switching
event. Consider an integration area bound by the superconducting path in the left loop.
When Maxwell’s equation is integrated over this area we find∫

S

(∇×E) · dS = − ∂

∂t

∫
S

B · dS (6.8)

1We assume the flux
H
A · dl to be fully stored in the inductor, thereby setting the right-hand side of

equation (2.25) equal to zero
2Normally overdamped junctions are used in RSFQ but underdamped junctions were chosen for this

example to underline the analogy with the mechanical pendulum via the frequency and decay-time of the
voltage/flux-oscillations
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The left-hand side can be simplified by applying Stokes’ Theorem and realizing that
−

∮
E · dl = V3, while the term in the integral of the right hand side is the flux Φ1 by

definition. Thus we find a simple relation between the flux in the left loop and the voltage
of the switching junction J3:

V3 = −∂Φ1

∂t
(6.9)

Integrating this equation and substituting the second Josephson equation (2.26) we find

∆Φ1 = −Φ0

2π

2π∫
0

dϕ3 = −Φ0 (6.10)

The integrated area of the voltage pulse in figure 6.1(c) indeed corresponds to one flux
quantum. The net result of the voltage pulse is the transfer of the flux quantum from the
left loop to the right loop. This final situation is displayed in figure 6.1(d).

6.3 Storing loop

Because RSFQ is a pulse based logic, the temporary latching of data is an essential task in
many RSFQ logic cells. This is typically achieved using a loop containing two Josephson
junctions and an asymmetrically applied bias current. Assuming equal critical currents
for the Josephson junctions, the free energy of such a storing loop, normalized with respect
to the Josephson coupling energy (2.29), is given by

u = 2− cosϕ1 − cosϕ2 − ibϕ1 +
1

2βL
(ϕ1 − ϕ2)

2 (6.11)

with ib the bias current normalized with respect to the critical current Ic. The last term in
this equation represents the energy that is stored in the magnetic field: Φ2/(2LEJ) where
the magnetic flux is expressed in terms of the phase drops via the fluxoid quantization
condition (2.42) 3. It should be noted that the fluxoid number n is chosen equal to zero,
which is justified as long as one implicitly assumes that the phase drops are allowed to
differ by more than 2π.

The potential energy landscape of this system is depicted in figure 6.2(a) for a screening
parameter βL = 2π and in the absence of a bias current ib. Away from the ϕ1 = ϕ2 (Φ = 0)
line the parabolic term corresponding to the magnetic energy is dominant and no local
minima exist. Along the line where the parabolic term has its minimum the cosine-shape
of the junction potential energy causes local minima corresponding to 1,3,5,... magnetic
flux quanta, depending on the screening parameter of the loop: a larger βL corresponds
to more local minima.

Note that not each point of the potential energy landscape corresponds to a physically
allowed (static) state because ϕ1 and ϕ2 are not independent variables: the phases are
linked via the Josephson equations and Kirchhoff’s law. At the minima however these
relations are satisfied, as can be seen from the sum (or difference) of the partial derivatives
of the potential energy with respect to the two phase drops

∂u

∂ϕ1
+

∂u

∂ϕ2
= sinϕ1 + sinϕ2 − ib (6.12)

3In the following discussion we define the flux positive in the ⊗ direction, which amounts to adding a
minus-sign in front of the flux in equation (2.42)
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Figure 6.2: (a) Potential energy landscape for a storing loop containing 2 Josephson
junctions. The minima are labelled by the corresponding number of flux quanta (which
are not necessarily fully formed). (b) Potential energy landscape when a (normalized)
bias current ib = 0.25 is asymmetrically applied. (c) Potential energy landscape for a bias
current ib = 0.50, which results in a bistable system. (d) Potential energy landscape for
a π-ring. All figures were calculated for a screening parameter βL = 2π.

At the extrema this reduces to

ib = sinϕ1 + sinϕ2 (6.13)

which is simply Kirchhoff’s law normalized with respect to Ic. Thus the minima corre-
spond to physically allowed stable states.
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The two-junction loop without bias current is completely symmetric with respect to
the flux polarity. As a result the number of stable states will always be an odd number
(1,3,5,...). However, such a loop is not suitable for the storage of binary data, for which a
bistable system is preferred. When the asymmetrically applied bias current is increased
the potential energy landscape is distorted. This is illustrated in figure 6.2(b) for a bias
current ib = 0.25. By increasing the bias current further the potential energy landscape
can be tuned such that the Φ = −Φ0 state is no longer a stable state. In figure 6.2(c)
the potential energy landscape for a bias current ib = 0.50 shows only two stable states:
the Φ = 0 and the Φ = +Φ0 state. For a bias current ib . 0.50 the energy states become
degenerate and the separating barrier reaches a maximum. This is the ideal configuration
for a well designed bistable storage loop in an RSFQ circuit. A further increase of the
bias current results finally in the vanishing of the second state and the system is no longer
bistable.

6.3.1 Storing π-loop

The artificial generation of a two level system makes the design of RSFQ logic cells strongly
asymmetric and acts often as the most critical parameter for correct operation. π-rings
have a bistable ground state by nature even for low values of the screening parameter.
The potential energy landscape of a π-ring, which can be calculated by simply setting ib to
zero and subtracting an extra π from the parabolic term in equation (6.11), is depicted in
figure 6.2(d). Because of its inherent bistability a π-loop does not require an external bias
current and is less sensitive to parameter deviations, which presents a strong advantage in
RSFQ design, circuit reliability and robustness against thermal noise. It should be noted
that this advantage does not hold exclusively for π-loops based on an unconventional
order parameter symmetry. The argument also holds when the π-phase shift is realized
using different mechanisms such as the π-junctions or rings containing a trapped fluxoid
as mentioned in section 2.10.

6.4 Design

We have implemented π-rings in a toggle flip-flop (TFF), a logic circuit in which the
fractional flux is controllably toggled by applying single flux quantum (SFQ) pulses at
the input channel. The flip-flop was incorporated in a testing circuit and its correct
operation demonstrated [193, 194]. The circuit, depicted in figure 6.3, was designed by
dr. Thomas Ortlepp at the RSFQ Design Group, University of Technology Ilmenau. It
consists of a DC/SFQ converter (input), a Josephson transmission line (transport), the
actual toggle flip-flop with integrated π-phase shifts and a read-out SQUID (output). The
operation of each of these individual elements will now shortly be discussed. In the design
process, a critical current density of 12 µA per µm was assumed.

6.4.1 DC/SFQ converter

The purpose of the DC/SFQ converter is to convert the DC input signal to SFQ pulses. It
consists of a loop (designed inductance Li = 8.4 pH) containing two Josephson junctions.
The design values of the critical currents are 156 µA for junction Ji1 and 120 µA for
junction Ji2. With LIc/Φ0 ≈ 0.5 this loop is a non-storing loop. The two junctions
are biased below their critical current with a bias current Ib1. When the input current
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Figure 6.3: (a) Circuit diagram and (b) optical micrograph of the test circuit for the
toggle flip-flop with built-in π-phase shifts. The separate elements are highlighted with
dashed lines: the DC/SFQ converter provides SFQ pulses which are transferred to the
toggle flip-flop via the JTL. The toggling of the internal state of the TFF is detected by a
read-out SQUID. The picture was taken before deposition of the ground plane. The two
white boxes mark places for the vias to ground.

Iin is increased, part of the current flows through these junctions, thereby increasing
the bias current of junction Ji2 and decreasing the bias current of junction Ji1. When
the total current flowing through junction Ji2 exceeds the critical current, the junction
switches to the voltage state and a flux quantum (of polarity ⊗) is released into the
Josephson transmission line. Because there was no flux in the loop to begin with and
one flux quantum has been transferred into the JTL, the loop contains one flux quantum
(of polarity �) after the switching event. This flux quantum corresponds to a counter-
clockwise circulating current which diminishes the bias current of junction Ji2 below the
critical current and it returns to the zero-voltage state (even though the loop is non-
storing, the input current Iin ensures that the junctions do not switch). When the input
current is reduced, the stored flux quantum can escape the system via junction Ji1, which
has no effect on the JTL. Thus an SFQ pulse can be generated for every rising ramp of
a triangular input signal.

The DC/SFQ converter can also be operated such that multiple SFQ pulses are re-
leased into the JTL on each rising ramp of the input signal. This can be accomplished
by enlarging the input signal. After the release of the first SFQ pulse junction Ji2 re-
laxes to the superconducting state and a flux quantum is trapped in the storing loop.
By increasing the input current Iin even further the junction can be biased to its critical
current again and the junction will switch again, thereby sending a second SFQ pulse into
the JTL and trapping another flux quantum in the storage loop. By increasing the input
current even further more SFQ pulses can be generated.
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Figure 6.4: (a) Microphoto and circuit diagram of the TFF. (b) Equivalent circuit that
was used in figure 6.3. The ⊗ and Ip, indicated in blue, represent an incoming SFQ pulse.

6.4.2 Josephson transmission line

The Josephson transmission line is used in RSFQ to transport SFQ pulses between differ-
ent logic cells. The JTL consists of several electrically coupled two-junction loops. The
critical currents of the junctions are designed to be 156 µA for junction Jt1, 126 µA for
junctions Jt2 and Jt3, and 108 µA for junction Jt4. The loop inductances are approxi-
mately 8 pH which results in LIc/Φ0 ≈ 0.5. The operation of a JTL is comparable to the
transfer of flux quanta that was discussed in subsection 6.2.1, except that the JTL has in
general more than 2 loops and these loops are not able to store a magnetic flux quantum.
Suppose an SFQ pulse (polarity ⊗) that is generated by the DC/SFQ converter enters
the JTL at junction Jt1. The circulating current which is associated with this flux quan-
tum will bias junction Jt2 above its critical current. Consequently, junction Jt2 switches
and the flux quantum is transferred through junction Jt2 to the next loop in the JTL,
where it biases junction Jt3 above its critical current and so forth. As a result, an SFQ
pulse presented at the input of the JTL will, after a cascade of switching events, leave
the JTL at the last junction Jt4. In principle, a JTL can operate without bias currents but
in practice bias currents are added to enhance the overall stability and relax fabrication
requirements and operation margins. Many RSFQ designs nowadays make use of passive
transmission lines, which were first realized in 1993 by Polonsky et al. [195]. These have
the advantage that they do not require external bias currents, are faster compared to
conventional Josephson transmission lines and are easier to fabricate. For the small JTL
which is incorporated in the test circuit these benefits are outweighed by the required
driver- and a receiver cells containing two junctions each and the relatively wide lines
which are required for good impedance matching.

6.4.3 Toggle flip-flop

A toggle flip-flop is a bistable circuit element that toggles its internal state on every
incoming pulse. Toggle flip-flops can be used to divide the clock frequency by a factor of
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two and are applied in a variety of digital counters. Our TFF consists of two electrically
coupled π-rings. The main purpose of having two loops instead of one is to enhance the
stability of the device. To clarify the layout of the TFF (in particular the positions of the
π-phase shifts) the circuit diagram superimposed on the micrograph and the equivalent
network are depicted in figures 6.4(a) and 6.4(b), respectively. All junctions are oriented
along the YBCO main crystal axes whose orientation is parallel to the lobes of the d-wave
clover shown in figure 6.4(a).

The circuit representation of π-phase shifts is not uniquely defined: different schemat-
ics may be used to represent the same physical situation provided the π-phase shifts are
placed consistently. For example the π-phase shift between junction J1 and node B is
equivalent to one π-phase shift just left and one π-phase shift just right of node B in
figure 6.4(a). Which of these representations ’feels more natural’ depends on the direc-
tion in which the path between node A and the top-left ground is being considered and
is therefore completely arbitrary. A similar situation occurs for the π-phase shift located
between node C and junction J4. The representation used in figure 6.4 needs the mini-
mum number of π-phase shifts and elegantly shows the TFF as two coupled π-loops. The
π-phase shift between the JTL and the TFF was designed there on purpose: it ensures
that the loop connecting junctions Jt4 and J4 is a standard loop instead of a π-loop. Thus
any unwanted currents that are associated with π-loops are prevented.

The design values of the critical currents are 90 µA for junctions J1 and J3, 132 µA
for junction J2, and 114 µA for junction J4. The common storing inductance, Ls is
approximately 10 pH which results in a screening parameter βL ≈ 3 or LIc/Φ0 ≈ 0.5 for
the π-loops. In the ground state the storing loops carry fractional flux quanta of opposite
polarity. Let us assume an initial state of a ⊗ and � half-integer flux quantum in the left
and right loop, respectively. When junction Jt4 emits an SFQ pulse (polarity ⊗) from the
JTL the associated current pulse Ip will split up at A and divide more or less evenly across
the two branches to ground. The SFQ pulse is depicted in blue in figure 6.4(b). During the
pulse the junctions J1 and J4 will be over-biased and will emit a complete flux quantum
(of ⊗ and � polarity, respectively) thereby changing the polarity of the fractional flux
quantum stored in the π-loops (↓→↑ + ⇓ and ↑→↓ + ⇑, respectively, where the single
arrows denote the fractional flux quanta in the loop, the double arrows denote the emitted
flux quanta, up-arrows have � polarity and down-arrows have ⊗ polarity). Because of the
rearrangement of the half-integer flux quanta now junctions J2 and J3 are biased. When
a new SFQ pulse enters the TFF these junctions will switch under the emission of a full
flux quantum (of ⊗ and � polarity, respectively) and the initial ground state is obtained.
Thus on every input pulse one of the junction pairs J1-J4 and J2-J3 will switch under the
emission of a flux quantum and the π-rings toggle their internal state (the polarity of the
fractional flux quantum).

6.4.4 Read-out SQUID

The circuit diagram of the read-out SQUID is presented in 6.5(a). To clarify the operation
an equivalent circuit bearing more resemblance to the conventional SQUID representation
as a two-junction loop is shown in figure 6.5(b). The core of the read-out SQUID consists
of a loop containing junctions Jo1 and Jo2 which is biased with a current Ib5. An extra
bias current Ib6 has been added to the left SQUID branch and the TFF storing loop
containing junctions J2 and J4 is incorporated in the right SQUID branch. Junction Jp2

is a passive junction (see next subsection). The SQUID junctions have critical currents
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Figure 6.5: (a) Circuit diagram of the read-out SQUID. (b) Equivalent circuit. The dotted
arrow indicates a stored half-integer flux quantum.

of 96 µA for junction J01 and 114 µA for junction J02. With an estimated self-inductance
of 7 pH the SQUID has a screening parameter βL ≈ 2.

The state of the toggle flip-flop is determined from the polarity of the fractional flux
quantum in the TFF storing loop. When the TFF toggles this polarity changes sign,
which results in a different phase drop between nodes A and B. This change in phase
drop affects the SQUID properties via the fluxoid quantization condition, in a similar
way that an externally applied magnetic field would. The bias current Ib6 which flows via
an inductor to ground provides an extra phase shift and can be used to set the SQUID
operation point to a position where it is most sensitive to variations in the phase caused
by the toggling of the TFF. The operation of the read-out SQUID can conveniently be
explained in terms of figure 2.9(b). First, bias current Ib5 is used to tune the overall shape
of the V -Φ-curve. Then bias current Ib6 is used to set the position on this bias curve.
Thus, these two bias currents have defined the operation point and the signal coming
from the TFF, which corresponds to a small change in Φ, can directly be translated
into a change of Vout for a proper choice of bias currents. In the experiment the bias
currents Ib5 and Ib6 were chosen such as to bias the SQUID at the edge of a steep flank
in figure 2.9(b). The resulting output signal is therefore expected to toggle between zero
and a finite voltage.

6.4.5 Passive junctions

The π-phase shifts in this design are obtained by exploiting the difference in order para-
meter symmetry of the superconductors YBCO and niobium, and as a result the circuit
consists of YBCO parts and niobium parts which are connected via Josephson junctions.
Most of these junctions are actively participating in the device operation. There are also
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Figure 6.6: (a) Schematic cross section showing a Josephson junction and a via to ground.
The layer thicknesses are indicated. (b) Optical micrograph of the TFF test circuit after
deposition of the niobium ground plane.

two passive junctions, labelled Jp1 and Jp2, whose purpose is more of a practical nature.
Because the circuit consists of two types of superconductor, during the design stage the
situation can arise where two nodes, which are in different superconductors, have to be
connected. Consider for example the loop containing junctions Jt4, Jp1, J3 and J4 in
figure 6.4(a). The left electrode of junction J3 and the top electrode of junction Jt4 have
to be connected (horizontally to ensure the π-phase shift). Because the two electrodes
are not made of the same superconducting material an extra junction is necessary. This
junction, labelled Jp1, is a passive junction in the sense that it is not designed to switch.
Its only purpose is to connect the two superconductors. A similar situation occurs for
the passive junction Jp2: as can be seen from figure 6.3 the base electrode of junction Jo2

cannot be connected to ground without the introduction of an extra Josephson junc-
tion. The non-switching junctions Jp1 and Jp2 are typically three times larger than the
other junctions in the circuit and behave like small parasitic inductors (the Josephson
inductance of a 300 µA junction corresponds to roughly 1 pH).

6.4.6 Fabrication

The first layers of the sample were fabricated using the standard fabrication process
described in section 4.5. However, to ensure well defined inductances the standard fab-
rication process was modified by the addition of a niobium upper ground plane. The
ground plane was deposited in the last fabrication step on top of the existing structures
for the practical reason that the YBCO structures need to be epitaxially grown on top of
the STO substrate.

A cross section indicating the layer thicknesses is shown in figure 6.6(a). The base
electrodes of the ramp-type Josephson junctions consist of a YBCO/STO bilayer with
thicknesses 150 nm (YBCO) and 100 nm (STO). A 7 nm YBCO interlayer and 20 nm
gold barrier separate the ramped base electrode from the 160 nm niobium top electrode.
The overlap of the junctions is 3 µm. On top of the structures a 200 nm SiO2 insulating
barrier was deposited in which vias were etched for contact to the ground plane. In the
final fabrication step a 200 nm niobium ground plane was deposited using DC sputtering.
A picture of the device after the deposition of the ground plane is shown in figure 6.6(b).

84



6.5. MEASUREMENT RESULTS

Figure 6.7: Measurement results for (a) a triangular input current corresponding to 1 SFQ
pulse per rising ramp of the input signal and (b) a triangular input current corresponding
to three SFQ pulses per rising ramp of the input signal.

6.5 Measurement results

The sample was cooled down to 5.3 K in a well-shielded flow cryostat to demonstrate
the correct operation both in normal and in oversteered operation mode. Figure 6.7(a)
shows the experimental results for the normal operation mode. In the top graph the input
current Iin is shown as a function of time. The input current is a triangular signal with an
amplitude of approximately 1 mA at a frequency of ∼100 Hz. The bottom graph shows
the output voltage Vout over the read-out SQUID. The voltage clearly jumps between the
zero-voltage state to a voltage just below 60 µV on every rising edge of the input signal.
Thus the flip-flop toggles its internal state on every incoming pulse.

The circuit was also operated in the mode, where multiple flux quanta where generated
at the rising ramp of the input signal, as mentioned in subsection 6.4.1. The experimental
results are shown in figure 6.7(b). The applied current signal was increased to an ampli-
tude of 4 mA, where the DC/SFQ converter releases three SFQ pulses per rising ramp
of the input signal. In the SQUID output voltage Vout three switching events per rising
ramp of the input signal can clearly be distinguished, which shows again that the TFF
switches its state for every incoming SFQ pulse. The deviations in the voltage level in the
oversteered mode of operation in figure 6.7(b) are caused by a parasitic coupling between
adjacent lines in the experimental setup. With these experiments we have demonstrated
for the first time the correct digital operation of a logic circuit element with integrated
π-phase shifts [193, 194].

6.6 Summary

The fractional flux quanta that can arise in YBCO/Nb hybrid superconducting structures
have been incorporated in a superconducting logic element: a toggle flip-flop. The polarity
of the fractional flux quanta was controllably toggled by applying SFQ pulses at the
input channel. The correct digital operation of a circuit containing a DC/SFQ converter,
Josephson transmission line, toggle flip-flop with intrinsic π-phase shifts and a read-out
SQUID has been demonstrated. This realization needed only a quarter of the size of a
standard TFF in established Nb technology with the same feature size of 2.5 µm.
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Chapter 7

Manipulation of semifluxons in
double corner junctions

7.1 Introduction

In this chapter the on-chip manipulation and detection of spontaneously generated mag-
netic flux quanta in double corner junctions is investigated. Corner junctions, which
were briefly introduced in subsection 3.3.2, have been used in a variety of experiments,
both individually and coupled in a zig-zag geometry. Corner junctions in the small facet
limit (facet length a� λJ with λJ the Josephson penetration depth) have been used for
phase-sensitive studies of the order parameter symmetry [113, 196, 197]. Corner junc-
tions in the large facet limit (a� λJ) have been used to study the coupling between the
d-wave-induced half-integer magnetic flux quanta that arise in such structures [116, 118].

The manipulation (flipping) of half-integer flux quanta in individual corner junctions
has already been demonstrated [116]. However, until now the detection and manipulation
of half-integer flux quanta in corner junctions has only been performed using scanning
SQUID microscopy (where a built-in susceptometer was used to provide a local magnetic
field to flip the semifluxons). Though the SSM is a powerful tool in the study of the mag-
netic phenomena in corner junctions, an on-chip solution for manipulation and detection
is highly desirable if the corner junction is to be used in any practical application.

Theoretical studies have predicted that the polarity of two coupled flux quanta in
a 0-π-0 junction can be changed by applying a transport current through the junction
itself [198]. We have used this property to realize a switchable double corner junction
and combined it with two SQUIDs for an on-chip read-out. Thus, we have observed the
controlled switching between the ↑↓- and ↓↑-states in a double corner junction using an
on-chip transport current. The design, experimental results and challenges are described
in this chapter.

7.2 Theory

The previous chapters were mainly concerned with spontaneously generated flux in π-
rings. As was already briefly mentioned in section 3.3, when the inner diameter of such
a ring is decreased to zero, a corner junction results, which is still characterized by a
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spontaneously generated flux in the ground state. Whereas for π-rings the requirement
for spontaneously generated flux is a sufficiently large screening parameter, for corner
junctions the requirement is a sufficiently large facet length (larger than the Josephson
penetration depth). The phase profile (and, by derivation, the magnetic flux- and current
profiles) of a conventional long Josephson junction can be described mathematically by
the so-called sine-Gordon equation. With the introduction of junctions containing intrin-
sic π-phase shifts and the intriguing accompanying spontaneously generated flux, many
theoretical papers were published on this subject, containing equally interesting mathe-
matics [198–213]. Most of these papers are based on a perturbed sine-Gordon equation.
In this section, a derivation of this perturbed sine-Gordon equation is presented. Then
the phase profile of fractional flux quanta in both single- and double corner junctions is
derived. We conclude by a short review of the response of a double corner junction to a
transport current.

7.2.1 Sine-Gordon equation for corner junctions

In this section we will derive the sine-Gordon equation for a corner junction. The per-
turbed sine-Gordon for a long one dimensional Josephson junction containing π-phase
shifts equation was first derived by Xu et al. [199] and later by Goldobin et al. [202],
whose derivation is closely followed here. A small deviation exists concerning the location
of the π-phase shift. Due to the nature of the d-wave-induced π-phase shift it is placed
outside of the actual junction, as opposed to the intrinsic 0-π junctions discussed by the
aforementioned authors. This has only a minor effect on some signs in the equations and
does not change the final result. Because of the large similarities, some of the terminology
of π-junctions is also used for the corner junctions.

The phase ϕ along a long Josephson junction is a function of the position x. Though
the practical realization of 0-π zig-zag or corner junctions involves 2 dimensional junc-
tions in which the different corner facets are oriented perpendicular with respect to each
other, the junction can be described along a one dimensional curvilinear coordinate x. A
long Josephson junction can be modelled as the parallel connection of short Josephson
junctions. A circuit diagram of this so-called distributed Josephson junction model is
displayed in figure 7.1. In this figure the current flowing through the junction I(x), the
externally applied current Ie(x), the current flowing through the inductance IL(x), the
gauge invariant phase drop over the junction ϕ(x) and the intrinsic phase drop caused by
the order parameter symmetry ε(x) are indicated.

The fluxoid quantization condition (2.31) for a single loop of length dx reads

1
2π

[ϕ(x)− ϕ(x+ dx) + ε(x)− ε(x+ dx)] +
Φ(x)
Φ0

= n (7.1)

With Φ(x) the magnetic flux through the loop (defined positive in the � direction).
Without loss of generality the fluxoid number n can be taken zero, which is justified as
long as the phase drops are allowed to differ by more than 2π. The flux penetrating the
loop can be written as the sum of the externally applied flux Φe and the self-generated
flux L(x)IL(x):

Φ(x) = Φe(x)− L(x)IL(x) (7.2)

Using Kirchhoff’s law we find

Ie(x) + IL(x− dx) = I(x) + IL(x) (7.3)
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Figure 7.1: Schematic of a distributed Josephson junction.

For a junction thickness t (perpendicular to the current transport direction) the currents
are related to the current densities as

I(x) = j(x)tdx (7.4)
Ie(x) = je(x)tdx (7.5)

Φe(x) is related to the externally applied magnetic field via

Φe(x) = Be(x)deff dx = µ0H(x)deff dx (7.6)

with deff the effective barrier thickness (along the current transport direction). The
inductance L(x) between the coordinates x and x+ dx can be written as [214]

L =
µ0deff
t

dx (7.7)

Inserting equation (7.2) into equation (7.1) and combining with equations (7.6) and (7.7)
gives

ϕx =
2πµ0deff

Φ0

[
H − IL

t

]
− εx (7.8)

where the subscript x denotes the derivative with respect to position. For the derivative
with respect to time the subscript t will be used. Combining (7.3) with equations (7.4)
and (7.5) gives

dIL
dx

= t(je − j) (7.9)

Differentiating equation (7.8) with respect to position and substituting equation (7.9)
yields

ϕxx =
2πµ0deff

Φ0
[Hx − (je − j)]− εxx (7.10)

Using the RCSJ model, in particular equation (2.33), to rewrite the current density j in
terms of the time derivatives of the phase we find

j

jc
= ω−2

p

[
ϕtt +

1
RC

ϕt

]
+ sinϕ (7.11)
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Inserting this into equation (7.10) and rearranging terms yields

λ2
Jϕxx − ω−2

p ϕtt − sinϕ =
ω−2

p

RC
ϕt −

je
jc

+
Hx

jc
− λ2

Jεxx (7.12)

with

λJ =

√
Φ0

2πµ0jcdeff
(7.13)

the Josephson penetration depth. ωp is the plasma frequency, as defined in equation (2.34).
The Josephson penetration depth and the plasma frequency are the typical length- and
timescales of variations in the junction phase. A junction is generally considered to be
in the long junction limit when the size of the junction is larger than typically 1-4 λJ .
Equation (7.12) is the (perturbed) sine-Gordon equation for a long Josephson junction
containing π-phase shifts. When the position- and time coordinates are normalized with
respect to the Josephson penetration depth λJ and the inverse plasma frequency ω−1

p the
normalized sine-Gordon equation is obtained:

ϕxx − ϕtt − sinϕ =
ω−1

p

RC
ϕt −

je
jc

+
Hx

jc
− εxx (7.14)

Throughout the rest of this section we will use the sine-Gordon equation in normalized
coordinates.

7.2.2 Phase profile of a half-integer flux quantum

In this section we consider the phase profile of a spontaneously generated half-integer flux
quantum in a single 0-π corner junction. A schematic of such a junction is depicted in
figure 7.2(a). The phase difference caused by the d-wave order parameter symmetry ε(x)
is defined as

ε(x) =

{
0 x < 0
π x > 0

(7.15)

In the absence of externally applied currents or magnetic fields and considering a static
case the normalized sine-Gordon equation (7.14) reduces to

ϕxx − sinϕ = −εxx (7.16)

Following Goldobin et al. [202] we introduce a ’magnetic phase’ µ(x, t), defined by1

µ(x, t) ≡ ϕ(x, t) + ε(x) (7.17)

Inserting this in (7.16) and considering (7.15) this gives

µxx =

{
sinµ x < 0
− sinµ x > 0

(7.18)

1Actually, Goldobin et al. define the magnetic phase µ(x, t) as the total phase drop over the junc-
tion ϕ(x, t) minus the order parameter related phase drop ε(x). The sign-difference of ε(x) can be
attributed to the fact that for the corner junctions this phase shift is not considered to be intrinsic, as
was discussed in subsection 7.2.1

90



7.2. THEORY

Multiplying both sides with 2µx and integrating with respect to x we find

µ2
x =

{
−2 cosµ+ C1 x < 0
2 cosµ+ C2 x > 0

(7.19)

The integration constants C1 and C2 can be determined from the boundary conditions
ϕ(±∞) = ϕx(±∞) = 0, or equivalently: µ(−∞) = 0, µ(+∞) = π and µx(±∞) = 0. This
gives C1 = C2 = 2. Inserting the integration constants and using some trigonometry we
find

µ2
x =

{
4 sin2(µ/2) x < 0
4 cos2(µ/2) x > 0

(7.20)

We solve for the positive semifluxon, whose phase profile monotonically increases from
µ = 0 at x = −∞ to µ = π at x = +∞. Since both sin(µ/2) and cos(µ/2) are positive
in this range, the positive square root of (7.20) has to be taken on the entire interval.
Separating variables we obtain

dx =


dµ

2 sin(µ/2)
x < 0

dµ

2 cos(µ/2)
x > 0

(7.21)

Integrating with respect to x and µ we find the solution

x =

{
C3 + ln tan(µ/4) x < 0
C4 − ln tan(π/4− µ/4) x > 0

(7.22)

which can be verified easily by differentiation. µ(x) increases monotonically from 0 at
x = −∞ to π at x = ∞. Considering the symmetry of the problem µ(0) = π/2, which
can be used to solve for the integration constants C3 and C4:

C3 = ln
1
G

(7.23)

C4 = lnG (7.24)

with G defined by

G = tan
(π

8

)
=
√

2− 1 (7.25)

Inserting the integration constants C3 and C4 into equation (7.22), µ(x) can be written
as

µ(x) =

{
4 arctan(Gex) x < 0
π − 4 arctan(Ge−x) x > 0

(7.26)

Combining this with equations (7.15) and (7.17), we finally obtain the phase profile of a
half-integer flux quantum in a 0-π long Josephson junction:

ϕ(x) = −4 sgn(x) arctan
(
Ge−|x|

)
(7.27)
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Figure 7.2: (a) Schematic of an infinite 0-π ramp-type Josephson junction. (b) Phase
profile ϕ(x), (c) magnetic field profile µx and (d) current profile µxx of an infinitely long
0-π Josephson junction (solid lines) and for a full flux quantum (dotted lines). (e) Positive
and (f) negative semifluxon represented in terms of the pendulum-analogon.
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From equations (7.1) and (7.17) it follows that the magnetic field produced by the spon-
taneously generated current is proportional to µx. Differentiating equation (7.27) with
respect to x we obtain

µx =
2

cosh (|x| − lnG)
(7.28)

The normalized current profile can be calculated by taking the sine of equation (7.27)
or, following (7.16) and (7.17), by taking the derivative of µx. Differentiating (7.28) with
respect to x we find

µxx = sinϕ = −2 sgn(x)
sinh (|x| − lnG)
cosh2 (|x| − lnG)

(7.29)

The phase-, field- and current profile of the half-integer flux quantum are displayed as
solid lines in figures 7.2(b)-(d). The phase profile can be understood intuitively by consid-
ering the distributed junction as a series of interconnected pendulums, as is schematically
illustrated in figures 7.2(e) and 7.2(f). At the center the phases are separated by a π-phase
shift and in the end points the pendulums have zero deflection. Note that in the above
calculations the rounding of the corner has not been taken into account. This rounding,
in combination with the angular dependence of the order parameter symmetry, will result
in a smooth transition of the critical current density to zero at the 45◦ nodal angle.

In conventional long Josephson junctions one allowed solution of the sine-Gordon
equation is the so-called soliton, where the phase makes a 2π rotation. This phase profile
corresponds to a full flux quantum, which, unlike the half-integer flux quantum produced
in the 0-π junction, is not bound to a discontinuity. The phase-, magnetic field- and
current profiles of a stationary soliton are shown as dotted lines in figures 7.2(b)-(d).

7.2.3 Double corner junctions

In this section the 0-π-0 corner junction will be discussed. In analogy to a 0-π junction the
properties of a double corner junction can be described using the sine-Gordon equation.
The static phase-, current- and flux profiles for such a junction are derived in the appendix.
The phase profile is shown in terms of the pendulum-analogon in figure 7.3(a) for the ↑↓-,
↓↑-, ↑↑- and ↓↓-configurations. Note that the phase profiles ϕ(x) which are presented
here differ from the magnetic phase profiles µ(x) depicted in figure A.1 by an amount
of π between the two 0-π discontinuities, as defined in equation (A.2). The derivative of
the magnetic phase, which is proportional to the magnetic field, is shown in figures 7.3(b)
and 7.3(c) for both the ferromagnetic and the antiferromagnetic configurations.

The realization of a 0-π-0 junction using YBCO/Nb ramp-type junction technology
is schematically depicted in figure 7.4(a). This configuration will also be referred to as a
double corner junction for obvious reasons and was used in the experiments presented in
this chapter. The first theoretical study of a current-biased 0-π-0 junction was published
in 1997 by Kato and Imada [198], who predicted the possibility of macroscopic quantum
tunnelling in such a junction. In 2005 the 0-π-0 junction was proposed as a candidate for
qubits by Goldobin et al. [212].

An important parameter in 0-π-0 junctions is the distance between the two 0-π discon-
tinuities (or the separation distance between the two corners in our experiment), which
will be denoted by d. Kato and Imada [198] showed that, in the absence of a magnetic
field or transport current, the junction is in the so-called flat-phase state when the cor-
ner separation d is smaller than a certain crossover-distance dc. The flat-phase state is
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Figure 7.3: (a) Phase profile for a double corner junction represented in terms of the
pendulum-analogon. (b) Magnetic field profile µx for the antiferromagnetic ↑↓ (solid line)
and ↓↑ (dotted line) configuration. (c) Magnetic field profile µx for the ferromagnetic ↑↑
(solid line) and ↓↓ (dotted line) configuration.

characterized by a constant (magnetic) phase profile and the absence of spontaneously
generated magnetic flux. Numerical calculations revealed a crossover-distance (normal-
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Figure 7.4: (a) Schematic representation of a 0-π-0 ramp-type junction. d represents the
distance between the corners and b is the length of the side-facets. (b) Spontaneously
generated flux produced on each corner versus the 0-facet length d. (c) Scanning SQUID
microscopy image of an ↑↓ semifluxon pair. (d) Flipping current If and depinning current
Id shown as a function of the corner separation d. Figures (b) and (d) were adapted from
Kato and Imada [198] and Susanto et al. [205]. Note that the corner distance d, used in
figures (b) and (d) is twice the parameter a which is used in the original articles. This
is only a matter of definition: in the original articles the ’0-facet’ was defined between -a
and -a and therefore has a length d = 2a.

ized with respect to λJ) of π/2, which was later independently obtained from phase-plane
analysis by Susanto et al. [205]. When the separation distance between the corners is
larger than the crossover-distance, the ground state of the junction is given by two an-
tiferromagnetically coupled vortices, which are denoted as ↑↓ and ↓↑. The flux carried
by the vortices grows asymptotically to Φ0/2 for d � dc as shown in figure 7.4(b). A
scanning SQUID microscopy image of the ↑↓-configuration is shown in figure 7.4(c).

Besides the corner separation d, also the length of the side-facets, which is denoted
by b in figure 7.4(a), is of importance. Figure 7.4(b) was calculated for infinitely long side-
facets. However, Zenchuk and Goldobin demonstrated [206] that the crossover-distance
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depends crucially on the ratio b/d, and even vanishes to 0 for b = d/2. For b larger
than ∼1 the crossover-distance quickly approaches π/2. For the experiments described in
this chapter, which had side facets b = 4d, the effect of a finite side-facet length can be
neglected and also in the rest of this section infinite side-facets are assumed.

The application of a transport current through a corner junction has a large influence
on the junction properties. The crossover-distance dc, for example, reduces to 0 when a
bias current is applied [204, 205]. Moreover, the transport current exerts a Lorentz-force
on the vortices, pushing them towards each other or pulling them apart, depending on the
polarity of the transport current. For small currents both the ↑↓- and the ↓↑-states are
stable. However, when the transport current exceeds a certain value that will be denoted
as the flipping current If , only one state is stable. If the system resides in the unstable
state and the transport current exceeds the flipping current (which is smaller than the
critical current of the junction), the half-integer flux quanta will change sign: ↓↑→↑↓.
This process, which can be regarded as the transport of a full flux quantum from one
corner to the other, is accompanied by a voltage pulse. Thus, the ground state can be
’flipped’ from ↑↓ to ↓↑ by applying a transport current [198, 204, 205].

The flipping current depends on the length of the middle facet as depicted in fig-
ure 7.4(d). Starting from zero at the critical facet length dc, the flipping current increases
monotonically and asymptotically grows to (2/π)Ic. In figure 7.4(d) also the depinning
current Id is plotted as a function of d. When the current through the junction exceeds
the depinning current, there are no stable stationary states available: the vortices are
torn from their pinning sites and the junction enters the voltage state. For d � dc the
depinning current asymptotically approaches (2/π)Ic [198, 205].

7.3 Design

In this chapter we present the successful switching between the ↑↓- and the ↓↑-states by
means of a transport current. The read-out was performed using an on-chip SQUID. The
design of our sample is shown schematically in figure 7.5. The film thicknesses that were
used are 100 nm YBCO and 65 nm STO for the base electrode, a 7 nm YBCO interlayer,
50 nm for the gold barrier and an 80 nm Nb top electrode. The rather large thickness
of the gold barrier was chosen to suppress jc, which was approximately 4.5 kA/cm2

for the experiments described in this chapter2. With an effective barrier thickness of
approximately 240 nm this results in a Josephson penetration depth λJ ≈ 4.9 µm.

The 0-π-0 double corner junction has a total length of 108 µm. It consists of a center
facet of 12 µm which is flanked by two 48 µm long side facets. As mentioned in the
previous section this ratio of 4 allows us to neglect effects due to the finite size of the
edge facets. The 12 µm corner separation corresponds to approximately 2.4 λJ . From
figure 7.4(d) it follows that in this regime the flipping- and depinning current are well-
separated and the fractional flux quanta have formed substantially (∼0.3 Φ0, but for
convenience these fractional flux quanta will still be referred to as half-integer flux quanta
or semifluxons).

Two SQUIDs are connected to read out the flux of the half-integer flux quanta. To
improve the flux-coupling between the corners and the SQUIDs, an integrated design was
chosen, in which the SQUIDs are coupled to the corners directly. The SQUID junctions

2This value of jc is larger than the value reported by [215] due to the choice of definition mentioned
in subsection 4.4.1
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Figure 7.5: Schematic representation of the sample used for the on-chip manipulation and
read-out of two coupled half-integer flux quanta.

have a width of 12 µm, and the total SQUID critical current is 115 µA. A crude estimation
of the SQUID self-inductance can be obtained from the relation

L = 1.25µ0dhole (7.30)

which is valid for square washers with a hole width dhole smaller than the edge width [216].
With dhole ≈ 10 µm a SQUID self-inductance of 15.7 pH is obtained. More detailed
simulations in FastHenry [171] reveal a larger value of 21 pH. This gives a screening
parameter βL ≈ 3.7. To bias the SQUIDs at their operating points, two flux bias lines
were added, as well as an external coil for the application of an external magnetic field
perpendicular to the sample (not shown).

7.4 Measurement results

All measurements described in this chapter were performed in a flow cryostat with a Cry-
operm inner-shielding and a mu-metal outer shielding. Instead of using the temperature
controller usually the cryostat was cooled down to its base temperature. Because this
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base temperature changed between different cool-downs, the operation temperature and
thus the critical current densities can differ between different measurement runs.

7.4.1 SQUID characterization

First, experiments involving only one read-out SQUID were performed. The behavior of
the right SQUID was measured as a function of the bias current Ib applied through the left
flux bias line. The IV characteristics are shown in figure 7.6(a). The current through the
flux bias line was increased from -1 mA to 1 mA with increments of 10 µA. For clarity, the
current-voltage characteristics have been offset by 5 µV. A clear modulation of the SQUID
critical current with respect to the applied flux bias is observed. From the modulation the
mutual inductance between the flux bias line and the SQUID is estimated to be 4.5 pH,
which is 20% less than the 5.6 pH that was numerically obtained using FastHenry. The
modulation of the critical current is only partial, as is to be expected for a SQUID with
large βL (see subsection 2.9.1). From the modulation depth and the critical current of
approximately 140 µA a self-inductance Lsq ≈ 15 pH is estimated, which is in excellent
agreement with the crude estimation from equation (7.30). In figure 7.6(b) the voltage
response of the SQUID to the flux bias is shown for different values of the SQUID bias
current. The SQUID bias current was increased from 50 µA to 150 µA using increments
of 5 µA. For clarity, the curves have been smoothed using adjacent point averaging. On
top of the SQUID modulation a much slower modulation due to the Josephson junction
itself can be distinguished.

The resonances mentioned in subsection 2.9.3 are clearly visible. From the resonance
voltage Vr ≈ 45 µV and a self inductance Lsq ≈ 15 pH the junction capacitance is
estimated to be 7 pF. This is, in fact, evidence that the junction capacitance cannot be
(fully) attributed to the parallel-plate configuration of the junction overlap (where the
YBCO and Nb electrodes are separated by an STO dielectric). The capacitance of this
overlap can be estimated by

CJ = ε0εSTO
w · ov
tSTO

(7.31)

with w the junction width (12 µm), ov the overlap (3 µm) and tSTO the thickness of the
STO layer (65 nm). To account for a junction capacitance of 7 pF a relative permittivity
of 1458 would have to be assumed for the STO, which is an order of magnitude higher than
the typical dielectric constant for STO thin films (in bulk the dielectric constant of STO
can indeed be much larger) [217]. This discrepancy indicates that the overlap is only
partially responsible for the junction capacitance. This has been independently observed
in different experiments where the capacitance was extracted from the Stewart-McCumber
parameter, which was obtained from the ratio of the switching- and retrapping- current
following Zappe [218]. In this experiment we observed a scaling of the calculated εSTO

with the dimensions of the overlap, indicating a faulty modelling. Evidence that the
junction capacitance cannot solely be attributed to the overlap has also been given by
Smilde who suggests significant contributions from the substrate and a depleted layer in
the junction [137].

Careful inspection of graphs 7.6(a) and 7.6(b) shows that the critical current in the
latter is smaller and closer to the design value. The discrepancy originates from the
fact that these measurements were performed in different cool-downs and therefore at
different temperatures, which results in a slightly different critical current density. Finally,
it should be noted that both the current-voltage characteristics and the SQUID-voltage
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Figure 7.6: (a) IV-characteristics of the right SQUID for different values of the current
applied through the left flux bias line Ib, which is increased from -1 mA to 1 mA in
steps of 10 µA. IV’s have been offset by 5 µV. (b) Vsq versus Ib for different SQUID bias
currents Isq. Isq was increased from 50 µA to 150 µA in steps of 5 µA.

measurement show ’jumps’ as the bias current is ramped up (though smeared out in the
voltage measurement). These jumps are attributed to a rearrangement of the flux in the
corner, and will be revisited in subsection 7.4.3.

7.4.2 Flipping experiments

To test the on-chip manipulation of the half-integer flux quanta we performed ’flipping
experiments’, which will be described below. First the SQUID was biased just above
its critical current and the flux through the SQUID was set such that the SQUID was
sensitive to small changes in the magnetic field (Isq = 125 µA, Ib = 142 µA for this
particular measurement). Then a current pulse Ip was applied to the corner and the
SQUID voltage Vsq registered. Next, a current pulse of the same amplitude but opposite
sign was applied and again Vsq was measured. This was repeated for different amplitudes
of the current pulse. The result of this procedure is shown in figure 7.7, where the black
solid points represent the measured SQUID voltage and the red lines represent the current
pulses. Though the SQUID voltage was also measured during the pulse, these points have
been removed to clarify the SQUID response. The time on the horizontal axis is shown
in arbitrary units. This has to do with the static operation mode of the measurement
system, which consists of a set of current sources and voltmeters which are driven by
a measurement program on a computer. The program sets all current sources to the
first value set in the stimulus file and waits to be sure the signals are stable. Then the
output voltages are registered and the procedure is repeated for the next points in the
stimulus file (it is possible to set a delay and/or averaging). Thus the unit of time of the
measurement system is actually ’a measurement’. The measurements shown in figure 7.7
typically took a few tens of seconds to run. The waveform that was used for the pulses
was two measurements (points) high current, six points no current, two points negative
current and then again six times no current.

For small current pulses the measured output voltage (when the pulse is off) remains
steady at a value of ∼43 µV, as can be seen in figure 7.7(a). This can be explained
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Figure 7.7: SQUID response Vsq (black solid points) to the current pulses Ip applied to the
double corner junction (red lines). The amplitudes of the current pulses are (a) 100 µA,
(b) 175 µA, (c) 250 µA, (d) 500 µA, (e) 750 µA and (f) 1000 µA. For all measurements
the SQUID was current-biased at Isq = 125 µA flux-biased with Ib = 142 µA.

by the fact that for these currents the current that is sent through the corner does not
exceed the flipping current and both states remain stable. When the amplitude of the
applied pulses is increased however, the pulse amplitude exceeds the flipping current and
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Figure 7.8: Flipping behavior for increasing pulse height. During this measurement the
SQUID had a current bias Isq = 125 µA and a flux bias Ib = 142 µA.

the measured voltage switches between ∼14 µV and ∼43 µV after each pulse, as can
be seen in figures 7.7(b) and 7.7(c). The observed switching of the voltage is consistent
with a rearrangement of the half-integer flux quanta. Interestingly, in the 500 µA-pulse
measurement shown in figure 7.7(d) the output voltage ’fails’ to switch occasionally, and
when the current is increased even further Vsq remains steady at ∼43 µV, as shown in
figures 7.7(e) and 7.7(f).

An estimate of the flipping current If can be deduced by examining the transition
between non-flipping and flipping behavior. This transition occurs when the applied
current pulses are between 100 µA and 175 µA . The depinning current Id, which is
simply the current at which the corner switches to the voltage state, was experimentally
found to be 490 µA. Thus, the ratio of the flipping- and depinning current lies in the
range 0.204 < If/Id < 0.357. The corner separation was designed to be d = 2.4 λJ . From
figure 7.4(d) we see that this distance corresponds to a ratio If/Id ≈ 0.22, which is in
good agreement with the range deduced from the flipping current.

The reason why, starting from current pulses of approximately 500 µA, the output
voltage does not flip any more is not yet understood. To rule out the possibility that
a change in the conditions between different measurements is responsible, a stimulus
containing pulses of increasing height was applied so the effect can be studied in a single
continuous measurement run. The result is plotted in figure 7.8 and shows a systematic
reluctance to switch for pulses above 500 µA. Interestingly, 500 µA is very close to the
depinning current. For pulses smaller than the depinning current, there is always at
least one well-defined static stable state. When the current pulses exceed the depinning
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current, no stationary states are available and the corner junction enters the voltage
mode. This may lead one to the conclusion that certain processes in the voltage state
are responsible for the lack of switching at these pulse amplitudes. An argument against
this line of thought is the fact that the timescale on which the current drops (larger than
a microsecond) is orders of magnitude larger than the typical timescale of the corner
junction, which is of the order of a picosecond. Thus the drop of the current trough the
double corner junction can be considered an adiabatic process and by the time this current
reaches the flipping current, the junction has already spent a considerable amount of time
in the regime where only one stable state exists, and it has already ’forgotten’ it was ever
in the voltage state. Note that the state which is favored for high pulse amplitudes is
the state that, for lower pulse amplitudes, corresponds to a positive pulse. Interestingly,
the bias currents of both the SQUID and the flux bias line have the same direction as a
positive pulse.

7.4.3 Magnetic field sweeps

We analyzed the SQUID response to the magnetic field sweeps where we used

• The corner junction

• The flux bias line

• An external coil

to sweep the magnetic field. In all three cases a hysteresis was observed, which will be dis-
cussed below. Figure 7.9(a) shows the response when the magnetic field was sweeped using
the corner junction with the SQUID biased at a current of 125 µA. Unlike the other two
experiments, in this experiment the transport current completely flows through the cor-
ners and thus affects the half-integer flux quanta directly as described in subsection 7.2.3.
The observed hysteresis is consistent with a rearrangement of the two half-integer flux
quanta. Referring to figure 7.5, the most stable configuration for the pair of semifluxons
when a positive current is applied is the ↑↓-configuration. When the system would reside
in the ↓↑-configuration and the transport current exceeds the flipping current If , the semi-
fluxons will rearrange to the more stable state ↑↓. This rearrangement is accompanied
by a change in field picked up by the SQUID corresponding to a larger transport current
which corresponds to the hysteresis observed in figure 7.9(a). In this argumentation we
have silently assumed that the SQUID signal picked up is that of the semifluxon closest
to the SQUID, which seems like reasonable assumption. The hysteresis is observed in a
highly asymmetric interval: between -35 µA and +140 µA. Only when the current pulses
in the flipping-experiments exceed both boundaries a full flipping will be observed. The
transition between non-flipping and flipping behavior is therefore expected to occur when
the pulse heights cross 140 µA, which is consistent with the 100-175 µA interval that was
found in subsection 7.4.2.

The source of the large asymmetry in hysteresis is likely to be the SQUID bias. This
becomes especially clear from the measurement shown in figure 7.9(b). Here the same
sweep was carried out for a positive (Isq = 125 µA) and a negative (Isq = −125 µA)
SQUID bias. The hysteresis occurs between -80 µA and +180 µA for the positive current
bias and between -180 µA and +80 µA for the negative current bias. This large effect
had not been taken into account when this sample was designed. The SQUIDs were
galvanically coupled to the corner junction in order to obtain a good magnetic coupling.
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Figure 7.9: Magnetic field sweep experiments. In figures (a) and (b) the magnetic field
is applied via the corner junction, in figure (c) via the flux bias line, and in figure (d)
via an external coil. In all experiments the SQUID was biased at 125 µA, except for the
measurement with negative bias in figure (b) for which a bias of -125 µA was used. The
blue, green and red circles shown in figures (c) and (d) indicate three potential states of
the system.

Considering the rather large effect of the SQUID bias on the junction properties this
choice of coupling may have to be reconsidered.

The SQUID- and corner-response to an external magnetic field was also examined, see
figures 7.9(c) and 7.9(d). In both experiments a double hysteresis was observed, which is
interpreted as three different states. In the graphs these states have been color-coded by
a blue, green and red circle. During the sweeps the voltage always cycled through these
three states in the same way: on the positive ramp the registered voltage first followed the
’blue path’, then went via green to red, and on the negative ramp the reverse path was
chosen: from red via green to blue. The transitions indicate that the system ’switches’
between different states which are separated roughly by 0.15 Φ0, just like the experiments
where the magnetic field was sweeped using the corner junction. An important difference
can be found in the direction of the switches. In the latter two field-sweep experiments
the system always jumps to a state that corresponds to a smaller bias current. In other
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words, the magnetic field gets counteracted. One obvious explanation would be that a
flux quantum gets trapped in the opposite SQUID. This explanation can be dismissed
however by considering the fact that the hysteretic behavior is the same whether the
magnetic field is applied via an external coil or via the flux bias line. The fact that the
flux bias line is located between the two SQUIDs provides a subtle difference in the way
flux is applied to both SQUIDs. Whereas the external coil provides each SQUID with
the same magnetic field, the magnetic field generated by the flux bias line has a different
sign for both SQUIDs. Therefore, if the jumps are to be explained by trapped flux, this
flux has to be trapped on the side of the bias line where the active SQUID is located. To
investigate the nature of the three states SSM measurements are a very useful tool. A
new design with structures optimized for this purpose was designed and fabricated but
unfortunately due to an earlier planned complete overhaul of the SSM measurement setup
these experiments have not yet been performed.

7.5 Summary

Long Josephson junctions containing one or multiple 0-π discontinuities give rise to spon-
taneously generated fractional flux quanta that are located at the transition points. These
vortices are completely determined by their phase profile, which can be solved from a per-
turbed sine-Gordon equation. In this chapter we have discussed the 0-π-0 junction, which
was realized as a YBCO/Nb ramp-type Josephson junction containing two corners. In
the ground state antiferromagnetically coupled fractional flux quanta arise at the corners.
It has been predicted that by sending a transport current through the double corner
junction the half-integer flux quanta can be flipped from the ↑↓-configuration to the ↓↑-
configuration, provided the transport current exceeds a certain threshold value. This
behavior has been confirmed by experiments in which pulses of different polarity and
amplitude were applied to the double corner junction, as well by experiments in which
a transport current was sweeped continuously. A controlled rearrangement between two
states was observed using an on-chip read-out SQUID. To enhance inductive coupling the
read-out SQUID was galvanically coupled to the double corner junction, which is shown
to have a substantial effect on the junction properties. A study to the effect of external
magnetic fields revealed a third state. This state has not been identified yet and requires
further investigation.
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Appendix A

Phase profile of a double
corner junction

In this appendix the phase profile of spontaneously generated half-integer flux quanta
in a double corner junction is derived. Static solutions for the ↑↓-, ↓↑-, ↑↑- and ↓↓-
configurations in the absence of external currents or magnetic fields are calculated. In
analogy to the derivation in subsection 7.2.2 the calculations are performed using a (con-
tinuous) magnetic phase µ(x), defined by

µ(x) ≡ ϕ(x) + ε(x) (A.1)

The corners (or, equivalently, the 0-π discontinuities) are located at x = ±a, with a ≡ d/2
half the length of the middle facet. For simplicity the side facets are assumed to be
infinitely long. For a double corner junction ε(x) can be written as

ε(x) =


0 x < −a
π |x| < a

0 x > a

(A.2)

In analogy to equation (7.18) the sine-Gordon equation reduces to

µxx =


sinµ x < −a
− sinµ |x| < a

sinµ x > a

(A.3)

which can be integrated to

µ2
x =


C1 − 2 cosµ x < −a
C2 + 2 cosµ |x| < a

C3 − 2 cosµ x > a

(A.4)

First, let us consider the solutions for |x| > a. C1 and C3 can be determined from the
boundary conditions for µ(x) and µx(x) at x = ±∞, which yields

C1 = C3 = 2 (A.5)
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↑↓ ↓↑ ↑↑ ↓↓

µ(−∞) 0 0 0 0
µ(+∞) 0 0 2π -2π
µx(−∞) 0 0 0 0
µx(+∞) 0 0 0 0
µ(0) ∗ ∗ π -π
µx(0) 0 0 ∗ ∗
µxx(0) ∗ ∗ 0 0
µ(−x) µ(x) µ(x) 2π-µ(x) -2π-µ(x)

Table A.1: Boundary conditions for µ(x) and its derivatives. The boundary conditions
follow from energy (1-4) and symmetry (5-8) considerations. Values which cannot be
determined a priori are indicated with an asterisk (∗). The last boundary conditions, not
shown in the table, are the continuity of µ and µx at x = ±a.

for all configurations (the boundary conditions are listed in table A.1). Thus, using the
identity cosµ = 1− 2 sin2(µ/2), µ2

x can be written as

µ2
x = 4 sin2

(µ
2

)
x > |a| (A.6)

µx can be obtained by taking either the positive or the negative square root, which
depends on the configuration under consideration and the sign of x:

µ
↑↓,↓↑

x =

{
+2 sin

(
µ
2

)
x < −a

−2 sin
(

µ
2

)
x > +a

µ
↑↑,↓↓

x =

{
+2 sin

(
µ
2

)
x < −a

+2 sin
(

µ
2

)
x > +a

(A.7)

Separation of variables yields

dx = ± dµ

2 sin
(

µ
2

) (A.8)

which can be integrated to obtain

x
↑↓,↓↑

=

{
+ ln

∣∣tan
(

µ
4

)∣∣ + x∗ x < −a
− ln

∣∣tan
(

µ
4

)∣∣ + x† x > +a

x
↑↑,↓↓

=

{
+ ln

∣∣tan
(

µ
4

)∣∣ + x∗ x < −a
+ ln

∣∣tan
(

µ
4

)∣∣ + x† x > +a

(A.9)

as can be verified by differentiation. Using the symmetry of the problem, in particular
the relation between µ(−x) and µ(x) as shown in table A.1, integration constant x† can
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be eliminated. For all configurations symmetry dictates x† = −x∗. Thus, we obtain

µ(x)
↑↓

=

{
4 arctan

[
e(x−x∗)

]
x < −a

4 arctan
[
e−(x+x∗)

]
x > +a

µ(x)
↓↑

=

{
−4 arctan

[
e(x−x∗)

]
x < −a

−4 arctan
[
e−(x+x∗)

]
x > +a

µ(x)
↑↑

=

{
4 arctan

[
e(x−x∗)

]
x < −a

4 arctan
[
e(x+x∗)

]
x > +a

µ(x)
↓↓

=

{
−4 arctan

[
e(x−x∗)

]
x < −a

−4 arctan
[
e(x+x∗)

]
x > +a

(A.10)

Where we have used the fact that removing the absolute value sign adds an extra minus-
sign for the ↓↑- and ↓↓-configurations. With the two ’tails’ of the phase profile solved (up
to a constant), let us move to the phase profile in the center facet. The expression for µ2

x

is given in equation (A.4). Using some trigonometry and introducing a new constant

k ≡ 2√
C2 + 2

(A.11)

this can be written as
k2

4
µ2

x = 1− k2 sin2
(µ

2

)
(A.12)

Again, special care has to be taken as to use the correct root

k
2µ

↑↓

x =

 +
√

1− k2 sin2
(

µ
2

)
−a < x < 0

−
√

1− k2 sin2
(

µ
2

)
0 < x < a

k
2µ

↓↑

x =

 −
√

1− k2 sin2
(

µ
2

)
−a < x < 0

+
√

1− k2 sin2
(

µ
2

)
0 < x < a

k
2µ

↑↑

x =

 +
√

1− k2 sin2
(

µ
2

)
−a < x < 0

+
√

1− k2 sin2
(

µ
2

)
0 < x < a

k
2µ

↓↓

x =

 −
√

1− k2 sin2
(

µ
2

)
−a < x < 0

−
√

1− k2 sin2
(

µ
2

)
0 < x < a

(A.13)

Separation of variables yields

dx = ±k dµ

2
√

1− k2 sin2
(

µ
2

) (A.14)

Integrating between zero and x gives

x∫
0

dξ = ±k

µ
2∫

µ0
2

dθ√
1− k2 sin2 θ

(A.15)
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Using the incomplete elliptic integral of the first kind, defined by [219]

F (m, k) =
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(A.16)

equation (A.15) can be written as
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Thus we find for µ(x)
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with am(u, k) the Jacobi amplitude, which is defined as the inverse of the elliptic integral
in equation (A.16) [219]

u = F (m, k)
am(u, k) = m

(A.19)

With equations (A.10) and (A.18) the sine-Gordon equation has been solved on the entire
interval. All that remains is the determination of the integration constants µ0, k and x∗,
which will be done in the remainder of this appendix. The approach that will be used
is the following: first we will express both µ0 and x∗ in terms of k and then we use the
continuity of µ(x) at the corners to solve for k.

The phase at x = 0, µ0, can be derived using the symmetry of the problem. One can
immediately see that µ0 is π when the half-integer flux quanta are in the ↑↑-configuration
and -π when they are in the ↓↓-configuration. For the ↑↓- and ↓↑-states µ0 can be obtained
from the argument that µx(0) = 0. From equation (A.12) we find µ0 = ±2 arcsin

(
1
k

)
where the positive value is for the ↑↓-state and the negative value for the ↓↑-state. Thus
we obtain for µ0 in terms of k:
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(A.20)
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It can be shown [219] that the Jacobi amplitude am(u, k) is symmetric around

u0 = F (± arcsin(k−1), k) (A.21)

This property can be used to simplify equation (A.18) to
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Next, we will express the integration constant x∗ in terms of k. Taking the derivative of
the magnetic phase for |x| > a from equation (A.10) and squaring we find:

µ2
x =


4

cosh2(x− x∗)
x < −a

4
cosh2(x+ x∗)

x > +a
(A.23)

for all configurations. Combining this with equation (A.4) and making use of the conti-
nuity of µ and µx at x = ±a we can express C2 as

C2 = 2µ2
x(±a)− 2 =

8
cosh2(a+ x∗)

− 2 (A.24)

Substituting C2 from equation (A.11) we obtain the following relation between x∗ and k:

x∗ = arccosh
(√

2k
)
− a (A.25)

With µ0 and x∗ from equations (A.20) and (A.25) we can write the phase profile as a
function of x and k only:
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Figure A.1: Magnetic phase- (µ), flux- (µx), and current-distribution for (a)-(c) the ↑↓-
state and (d)-(f) the ↓↑-state.
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Figure A.1: (continued) Magnetic phase-, flux- and current-distribution for (g)-(i) the
↑↑-state and (j)-(l) the ↓↓-state.
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where we have used the sign-reversal properties tan(−x)=− tan(x), F (−m, k)=−F (m, k),
am(−u, k)=−am(u, k), and

K(k) ≡ F
(π

2
, k

)
(A.27)

is the complete elliptic integral of the first kind [219]. The last integration constant k
can be obtained from the continuity of µ at x = ±a. For a given facet length d = 2a
we find the following implicit relations for the antiferromagnetically aligned (k > 1) and
ferromagnetically aligned semifluxons (k < 1):
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Equations (A.26) and (A.28) can be used to construct the phase profiles for the ↑↓-, ↓↑-,
↑↑- and ↓↓-configuration of the half-integer magnetic flux quanta. The flux- and current
profiles follow from taking the first- and second derivatives, respectively. To obtain the
’real’ phase profile ϕ(x) the d-wave-induced phase shift of π should be subtracted from
the middle facet, in accordance with equation (A.2). The phase µ(x) and its derivatives
are plotted in figure A.1 for a half-facet length a=2 (k was calculated to be 1.027958 for
the antiferromagnetic orientation and 0.977071 for the ferromagnetic orientation).
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Summary

This thesis is concerned with a remarkable phenomenon which occurs in rings connecting
the high-Tc superconductor YBa2Cu3O7−δ (YBCO) to the low-Tc superconductor nio-
bium. In such hybrid rings a spontaneously generated current leads to the formation of
fractional flux quanta. These fractional flux quanta have been used for a fundamental
study of the order parameter symmetry in YBCO and for the realization of a novel su-
perconducting logic circuit element. Also the first controlled on-chip manipulation and
read-out of two antiferromagnetically coupled fractional flux quanta in a long YBCO/Nb
ramp-type Josephson junction containing two corners has been demonstrated.

The cuprate superconductor YBCO has a predominantly dx2−y2-wave pairing symme-
try. Superconductivity is assumed to occur in the quasi two-dimensional copper-oxygen
planes. The superconducting gap has a maximum along the a- and b main crystal axes
and is suppressed to zero in the nodal directions (diagonally between the crystal axes).
An important property of the dx2−y2-wave order parameter symmetry is a π-phase differ-
ence between orthogonal directions. It is this phase difference which can be exploited to
realize π-rings which contain a spontaneously generated flux corresponding to a fraction
of a flux quantum of positive or negative polarity.

The fluxoid quantization condition for loops containing Josephson junctions states that
the sum of the phase differences (normalized by 2π) of the junctions and the enclosed
magnetic flux (normalized by the flux quantum Φ0) has to be an integer. For a standard
loop this condition is satisfied when the phase drops over the junctions and the enclosed
magnetic field are both zero. Also a single-crystalline YBCO ring is characterized by this
currentless ground state because the number of d-wave-induced π-phase shifts picked up
when going around the loop will always be an even number. By using hybrid structures
which connect the anisotropic (d-wave) superconductor YBCO to the isotropic (s-wave)
superconductor niobium, rings can be realized that contain an odd number of π-phase
shifts, and for which the solution of zero flux and zero phases would violate the fluxoid
quantization condition. In these rings the current, phases and enclosed flux redistribute
in such a way that the fluxoid quantization condition is satisfied. For rings in the small-
inductance limit (LIc � Φ0) the d-wave-induced π-phase shift will be compensated mainly
by the phases and the magnetic field is negligible. As the inductance increases the effect of
the phases becomes smaller and the self-generated flux takes over, growing asymptotically
to a half-flux quantum in the large inductance limit.

The precise composition of the order parameter symmetry in the cuprates is not yet
established. The order parameter symmetry of YBCO is predominantly dx2−y2-wave,
but contains additional admixtures, on which no general agreement has been reached.
The orthorhombic crystal structure of YBCO, and in particular the presence of so-called
CuO chains, has lead several theorists to the proposition of an s-wave admixture, which

113



SUMMARY

results in an anisotropy between the a- and b-axis orientations. The precise magnitude
(values ranging from ∆a/∆b=1.1 to 2 have been reported) and the possibility of additional
complex admixtures (which allow for phase differences different from 0 or π) are however
heavily debated. Insight into the symmetry properties with respect to the underlying
crystal structure may lead to a significant contribution to the model of high-Tc super-
conductivity, one of the ’holy grails’ in current-day materials science. For this purpose
phase-sensitive experiments probing the pairing symmetry as a function of momentum are
desirable, but until now such experiments have only been performed in a limited number
of geometries.

The hybrid YBCO/Nb π-rings discussed in this thesis provide an excellent tool for
an angle-resolved phase-sensitive study of the order parameter symmetry. Arrays of two-
junction rings were fabricated with the angle of one of the junctions varying for each ring.
The intrinsic phase shift of each ring, and the associated presence or absence of a fractional
flux quantum, depends strongly on the geometry of the ring and the details of the order
parameter symmetry of the YBCO base electrode. The rings were cooled down below the
superconducting transition temperature of niobium and imaged using scanning SQUID
microscopy (SSM). From the observed angular dependence of the spontaneously generated
flux it is concluded that the in-plane gap in YBCO is at least 20% larger in the b-axis
direction. This value is to be taken as an underestimate of the gap anisotropy because
the samples were not fully untwinned. Moreover, no evidence for complex admixtures
was observed. Based on the measurements it is concluded that any imaginary component
of the gap, if at all present, should be smaller than 2.5%.

The two-fold degenerate ground state of π-rings makes them attractive candidates for
storage of binary data in superconducting digital electronics. Rapid single flux quantum
technology (RSFQ) is a superconducting logic family in which binary data is represented
by the presence (for the logic ’1’) or absence (for the logic ’0’) of a flux quantum. Because
RSFQ is a pulse-based technology, many cells require storing loops for the temporary
latching of data. In conventional RSFQ technology the standard storing element is a two-
junction loop, which is symmetric with respect to the flux polarity and thus always has
an odd number of states (the exact number depending on the inductance of the loop). To
make such rings suitable for storage of binary data these rings have to be asymmetrically
biased in order to deform the potential energy landscape such that the Φ=0 and the
Φ=Φ0 states become degenerate. This artificial transformation to a two-level system acts
as a critical factor in the design- and operation stage of circuits. Rings containing an
intrinsic π-phase shift have a bistable ground state by nature, which alleviates the need
for bias lines, increases design- and operation margins and boosts the overall robustness
of circuits.

A novel circuit element, based on d-wave-induced π-phase shifts, was designed, fabri-
cated and its successful operation demonstrated. The test-circuit consisted of a DC/SFQ
converter, which converts the rising ramp of a DC input current to a single flux quan-
tum (SFQ) pulse, a Josephson transmission line (JTL) which is used for the transport of
single flux quanta, a π-ring based toggle flip-flop (TFF), which toggles its internal state
(corresponding to the ↑↓- and ↓↑- configuration of two antiferromagnetically coupled frac-
tional flux quanta in the π-rings) on every incoming SFQ pulse, and a DC SQUID which
was used for the read-out of the internal state of the TFF. The measurements demon-
strated a controlled change in the SQUID-voltage on every rising ramp of a triangular
DC input current. The circuit was also operated in a mode where the DC/SFQ converter
released multiple flux quanta into the JTL for every rising ramp. The SQUID registered
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the toggling of the TFF internal state for each flux quantum.
The spontaneously generated fractional flux quanta were not only studied in π-rings

but also in so-called ’double corner’ junctions. These are long YBCO/Nb ramp-type
Josephson junctions containing two 90◦ in-plane angles. The symmetry of the (predomi-
nantly) d-wave order parameter in YBCO induces an intrinsic phase difference π between
perpendicular facets in the junction which results in the spontaneous formation of frac-
tional flux quanta at the corners. In the ground state the fractional flux quanta are
ordered in an antiferromagnetic arrangement. The static phase profiles of such a 0-π-0
junction have been derived by making use of a perturbed sine-Gordon equation.

Earlier studies on fractional flux quanta in single and multiple (zig-zag) corner geome-
tries relied heavily on scanning SQUID microscopy, which is undesirable if corner junc-
tions are to be implemented in any practical application. In this thesis the first successful
on-chip manipulation and read-out of fractional flux quanta in a long 0-π-0 junction is
presented. The experimental results confirm the theoretical prediction that the polar-
ity of two antiferromagnetically coupled fractional flux quanta in such a junction can be
inverted through the application of a transport current. Controllable toggling between
the two ground states has been observed both in pulse experiments and in magnetic field
sweeps using the double corner junction as a field bias. In field sweep experiments using
an external coil or an on-chip bias line a third state was observed which requires further
investigation.

The work described in this thesis provides a solid basis for the application of half-
integer flux quanta both for fundamental studies of the order parameter symmetry and
for applications in superconducting digital electronics. The angle-resolved phase-sensitive
experiments that have been used to study the in-plane gap symmetry of YBCO can also
be used for different materials or to study the pairing behavior as a function of doping
and temperature. The advantages of π-phase shifts in superconducting digital electronics
is not merely restricted to d-wave-induced π-phase shifts but can be extended to circuits
involving for example SFS-junctions or trapped fluxoids. The π-phase shifts increase
device symmetry, relax design requirements and improve the operation margins. With
the study of the on-chip manipulation and read-out of coupled fractional flux quanta in
a double corner junction the first step has been taken for the incorporation of corner
junctions in superconducting circuits.
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Samenvatting

Dit proefschrift gaat over een opmerkelijk verschijnsel dat zich voordoet in ringen die
de hoge-Tc supergeleider YBa2Cu3O7−δ (YBCO) met de lage-Tc supergeleider niobium
verbinden. In dergelijke hybride ringen gaat spontaan een stroom lopen die leidt tot
de vorming van fractionele flux quanta. Deze fractionele flux quanta zijn gebruikt voor
een fundamentele studie naar de ordeparametersymmetrie in YBCO en voor de realisatie
van een nieuw supergeleidend logisch circuit element. Tevens is de eerste gecontroleerde
on-chip manipulatie en uitlezing van twee antiferromagnetisch gekoppelde fractionele flux
quanta in een lange YBCO/Nb hellingstype Josephson junctie met twee hoeken gedemon-
streerd.

De cupraatsupergeleider YBCO heeft een overwegend dx2−y2-wave paarvormingssym-
metrie. Aangenomen wordt dat supergeleiding zich afspeelt in de quasi twee-dimensionale
koperoxide vlakken. De supergeleidende ’gap’ heeft een maximum langs de a- en b hoofd-
kristalassen en wordt volledig onderdrukt langs de ’nodal directions’ (diagonaal tussen de
kristalassen). Een belangrijke eigenschap van de dx2−y2-wave ordeparametersymmetrie is
een π-faseverschil tussen orthogonale richtingen. Het is dit faseverschil dat benut kan wor-
den om π-ringen te realiseren die een spontaan gegenereerde flux bevatten, overeenkomend
met een fractie van een flux quantum van positive of negatieve polariteit.

De ’fluxoid’ kwantiseringsvoorwaarde voor ringen met Josephson juncties stelt dat
de som van de faseverschillen (genormaliseerd met 2π) van de juncties en de ingesloten
flux (genormaliseerd met het flux quantum Φ0) een geheel getal moet zijn. Voor een
standaard ring is aan deze voorwaarde voldaan wanneer de faseval over de juncties en
het ingesloten magneetveld beide nul zijn. Ook een enkel-kristallijne YBCO ring wordt
gekenmerkt door deze stroomloze grondtoestand, omdat het aantal d-wave-gëınduceerde
π-faseverschuivingen dat wordt opgepikt bij het rondgaan van de ring altijd een even getal
is. Door gebruik te maken van hybride structuren die de anisotrope (d-wave) supergelei-
der YBCO verbinden met de isotrope supergeleider (s-wave) niobium, kunnen ringen
gerealiseerd worden die een oneven aantal π-faseverschuivingen bevatten en waarvoor de
oplossing met een flux en fases van nul in strijd zou zijn met de fluxoid kwantiseringsvoor-
waarde. In deze ringen zullen de stromen, fases en ingesloten flux herdistribueren op een
zodanige wijze dat aan de fluxoid kwantiseringsvoorwaarde wordt voldaan. Voor ringen
in de kleine inductie limiet (LIc � Φ0) zal de d-wave-gëınduceerde π-faseverschuiving
voornamelijk door de fases worden gecompenseerd en is het magneetveld te verwaarde-
lozen. Met het toenemen van de inductie wordt het effect van de fases kleiner en neemt de
zelfgegenereerde flux het over, daarbij asymptotisch groeiend naar een half flux quantum
in de grote inductie limiet.

De precieze samenstelling van de ordeparametersymmetrie in de cupraten staat nog
niet vast. De ordeparametersymmetrie van YBCO is overwegend dx2−y2-wave, maar
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bevat additionele vermengingen, waarover geen algemene overeenstemming is bereikt.
De orthorhombische kristalstructuur van YBCO, en in het bijzonder de aanwezigheid
van zogenaamde CuO ketens, heeft verschillende theoretici geleid tot het voorstellen van
een s-wave vermenging, die resulteert in een anisotropie tussen de a- en b-as oriëntaties.
Over de precieze omvang (waarden variërend van ∆a/∆b = 1.1 tot 2 zijn gerapporteerd)
en de mogelijkheid van additionele complexe vermengingen (die faseverschillen anders
dan 0 en π toelaten) zijn de meningen echter sterk verdeeld. Inzicht in de symmetrie-
eigenschappen met betrekking tot de onderliggende kristalstructuur kan mogelijk leiden
tot een belangrijke bijdrage aan het model van hoge-Tc supergeleiding, één van de ’heilige
gralen’ in de hedendaagse materiaalkunde. Hiervoor zijn fasegevoelige experimenten die
de paarvormingssymmetrie als functie van impuls in kaart brengen wenselijk, maar tot
nu toe zijn dergelijke experimenten slechts in een beperkt aantal geometrieën uitgevoerd.

De hybride YBCO/Nb π-ringen die in dit proefschrift worden besproken bieden een
uitstekend instrument voor een hoekopgeloste fasegevoelige studie naar de ordeparame-
tersymmetrie. Arrays van ringen met twee juncties zijn gefabriceerd waarbij de hoek van
één der juncties gevarieerd werd. De intrinsieke faseverschuiving van elke ring, en de
bijbehorende aanwezigheid dan wel afwezigheid van een fractioneel flux quantum, hangt
sterk af van de geometrie van de ring en de details van de ordeparametersymmetrie van de
YBCO basiselectrode. De ringen zijn afgekoeld tot onder de supergeleidende overgangs-
temperatuur van niobium en afgebeeld met behulp van scanning SQUID microscopie
(SSM). Uit de waargenomen hoekafhankelijkheid van de spontaan gegenereerde flux wordt
geconcludeerd dat de ’in-plane’ gap in YBCO minstens 20% groter is in de b-as richting.
Deze waarde moet als ondergrens gezien worden voor de gap-anisotropie omdat de sam-
ples niet volledig ’untwinned’ waren. Er is bovendien geen bewijs gevonden voor complexe
mengvormen. Op basis van de metingen is geconcludeerd dat een eventuele imaginaire
component van de gap, als die al aanwezig is, kleiner moet zijn dan 2.5%.

De tweevoudig ontaarde grondtoestand van π-ringen maakt hen aantrekkelijke kandi-
daten voor de opslag van binaire data in supergeleidende digitale electronica. Rapid
single flux quantum technologie (RSFQ) is een supergeleidende logica familie waarin
binaire gegevens worden gerepresenteerd door de aanwezigheid (voor de logische ’1’)
dan wel afwezigheid (voor de logische ’0’) van een flux quantum. Omdat RSFQ een
puls-gebaseerde technologie is, hebben veel cellen opslagringen nodig voor het tijdelijk
vasthouden van data. In conventionele RSFQ is het standaard opslagelement een ring
met twee juncties, die symmetrisch is met betrekking tot de flux polariteit en dus altijd
een oneven aantal toestanden heeft (waarbij het precieze aantal afhangt van de induc-
tie van de ring). Om dergelijke ringen geschikt te maken voor de opslag van binaire
data moeten deze ringen asymmetrisch aangedreven worden om het potentiaallandschap
zodanig te vervormen dat de Φ=0 en de Φ=Φ0 toestanden ontaard worden. Deze arti-
ficiële transformatie naar een twee-niveau systeem is een kritieke factor in de ontwerp-
en operatiefase van circuits. Ringen die een intrinsieke π-faseverschuiving bevatten hebben
van nature al een bistabiele grondtoestand, hetgeen de behoefte aan aandrijflijnen ver-
mindert en bovendien de ontwerp- en operatiemarges alsmede de algemene robuustheid
van circuits vergroot.

Een nieuw circuit element, gebaseerd op d-wave-gëınduceerde π-faseverschuivingen, is
ontworpen, gefabriceerd en de correcte werking ervan aangetoond. Het testcircuit bestond
uit een DC/SFQ omzetter, die de stijgende helling van een DC ingangsstroom converteert
naar een ’single flux quantum’ (SFQ) puls, een Josephson transmissie lijn (JTL), die
gebruikt wordt voor het transport van SFQ pulsen, een π-ring-gebaseerde ’toggle flip-
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flop’ (TFF), die zijn interne toestand (bestaande uit de ↑↓- en ↓↑- configuratie van twee
antiferromagnetisch gekoppelde fractionele flux quanta in de π-ringen) bij elke inkomende
SFQ puls omschakelt, en een DC SQUID dat gebruikt werd voor de uitlezing van de
interne toestand van de TFF. De metingen toonden een gecontroleerde verandering in
het SQUID-voltage aan bij elke stijgende helling van een driehoekige DC ingangsstroom.
Het circuit is ook gebruikt in een modus waarbij de DC/SFQ omzetter meerdere flux
quanta naar de JTL liet gaan voor elke stijgende helling. Het SQUID registreerde het
schakelen van de interne toestand van de TFF voor elk flux quantum.

De spontaan gegenereerde fractionele flux quanta zijn niet alleen bestudeerd in π-
ringen maar ook in zogenaamde ’dubbele hoekjuncties’. Dit zijn lange YBCO/Nb hellings-
type Josephson juncties die twee in-plane hoeken van 90◦ bevatten. De symmetrie van
de (voornamelijk) d-wave ordeparameter in YBCO induceert een intrinsiek faseverschil π
tussen haaks op elkaar staande facetten in de junctie, hetgeen resulteert in de spontane
formatie van fractionele flux quanta op de hoeken. In de grondtoestand zijn de fractionele
flux quanta antiferromagnetisch geordend. De statische faseprofielen van een dergelijke
0-π-0 zijn afgeleid door gebruik te maken van een verstoorde sine-Gordon vergelijking.

Eerdere studies aan fractionele flux quanta in enkele en meervoudige (zig-zag) hoek-
geometrieën steunden sterk op scanning SQUID microscopie, hetgeen onwenselijk is voor
het gebruik van hoekjuncties in een praktische toepassing. In dit proefschrift is de eerste
succesvolle on-chip manipulatie en uitlezing van fractionele flux quanta in een lange 0-π-0
junctie gepresenteerd. De experimentele resultaten bevestigen de theoretische voorspelling
dat de polariteit van twee antiferromagnetisch gekoppelde fractionele flux quanta in een
dergelijke junctie omgeklapt kan worden door het aanleggen van een transportstroom.
Het controleerbaar schakelen tussen de twee grondtoestanden is waargenomen in pulsex-
perimenten en magneetveldexperimenten waarbij de dubbele hoekjunctie gebruikt werd
om het magneetveld te variëren. In magneetveld-experimenten waar een externe spoel of
een on-chip aandrijflijn werd gebruikt is een derde toestand ontdekt die nader onderzoek
vereist.

Het werk dat beschreven wordt in dit proefschrift levert een solide basis voor de
toepassing van halftallige flux quanta zowel voor fundamentele studies naar de ordepa-
rametersymmetrie als voor applicaties in supergeleidende digitale electronica. De hoek-
opgeloste fasegevoelige experimenten die gebruikt zijn voor de studie naar de in-plane gap
symmetrie van YBCO kunnen ook gebruikt worden voor andere materialen of voor de
studie naar het paarvormingsgedrag als functie van dotering en temperatuur. De voor-
delen van π-faseverschuivingen in supergeleidende digitale electronica zijn niet slechts
beperkt tot de d-wave-gëınduceerde π-faseverschuivingen maar kunnen worden uitgebreid
naar circuits die gebruik maken van bijvoorbeeld SFS juncties of ingevangen fluxoids. De
π-faseverschuivingen verhogen de symmetrie van de schakeling, verlagen de ontwerpeisen
en verbeteren het werkbereik. Met de studie van de on-chip manipulatie en uitlezing van
gekoppelde fractionele flux quanta in een dubbele hoekjunctie is de eerste stap gezet voor
de integratie van hoekjuncties in supergeleidende circuits.
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Met de totstandkoming van dit proefschrift wordt een periode van onderzoek afgesloten
waar ik nog lang en met veel plezier aan terug zal denken. Niet alleen vanwege de
fascinerende verschijnselen waarmee ik mij heb mogen bezighouden, maar vooral ook
vanwege de omgeving waarin dit onderzoek heeft plaatsgevonden. In iets ruimere zin doel
ik hiermee op de stad Enschede en de groene campus van de Universiteit Twente, wat
specifieker denk ik aan de gezellige en collegiale sfeer binnen de vakgroep Lage Tempera-
turen. Deze hebben er alle toe bijgedragen dat ik de laatste jaren met veel genoegen aan
het onderzoek, dat in dit proefschrift is beschreven, heb gewerkt. Uiteraard heb ik dit
onderzoek niet alleen uitgevoerd, en ik ben dan ook veel dank verschuldigd aan de talloze
personen die, direct of indirect, aan dit proefschrift hebben bijgedragen.

In de eerste plaats gaat mijn dank uit naar Horst Rogalla, voor het bieden van de mo-
gelijkheid dit promotie-onderzoek binnen de vakgroep Lage Temperaturen uit te voeren.
Ook wil ik graag mijn promotor Hans Hilgenkamp bedanken voor het in mij gestelde
vertrouwen. Ik heb altijd veel respect gehad voor je heldere uitleg van complexe pro-
blemen. Het inmiddels legendarische colloquium over het Fractional Quantum Hall effect
tijdens het zeiluitje in Heeg is hier een goed voorbeeld van. Ook je toegankelijkheid
heeft me altijd enorm aangesproken. Stichting FOM ben ik erkentelijkheid verschuldigd
voor de detachering binnen de vakgroep Lage Temperaturen en de door hen geleverde
ondersteuning gedurende het gehele promotietraject.

The experiments described in chapter 5 would not have been possible without the
fruitful collaboration with Chang Tsuei and John Kirtley at the IBM T.J. Watson Re-
search Center in Yorktown Heights (USA). It has been an honor and a privilege to have
worked with two such distinguished scientists. I wish to express my gratitude to Chang
for accepting to become a member of my Ph.D. committee and reading the draft version
of my thesis. John, thanks for your invaluable scanning SQUID microscopy studies, it has
been a pleasure seeing you operate the scanning SQUID microscope during your visits
in Twente. I would also like to thank you for many interesting discussions ranging from
order parameter symmetry to the finer details of Dutch.

I would also like to take this opportunity to thank Thomas Ortlepp and Olaf Mielke
from the RSFQ Design Group at the University of Ilmenau (Germany) who played a
crucial role in the experiments described in chapter 6. Thomas, I would like to thank
you for teaching me almost everything I know about RSFQ. Explaining things comes
very natural to you, and I am happy to see that this talent is currently being employed
to train young students at the University of Ilmenau, as I have witnessed during one
of your classes. It was a pleasure to find somebody with the same interest in riddles,
and I enjoyed supporting the ’Kusshand’-team during the Bettenrennen in Friedrichroda.
Olaf I would like to thank for many interesting discussions on Josephson structures and
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potential energy landscapes and the last-minute support during the final stages of my
thesis.

I would like to thank Hadi Susanto from the School of Mathematical Sciences at
the University of Nottingham (UK) for useful discussions on the sine-Gordon equation
and checking the derivation presented in the appendix. In dit verband wil ik ook graag
Hans Bosschker bedanken, die ik tijdens mijn promotie heb mogen begeleiden bij zijn
afstudeeronderzoek. Ik heb met verbazing gekeken hoe snel je de stof tot je nam en jouw
inspanningen zijn van onschatbare waarde geweest voor de in hoofdstuk 7 gepresenteerde
resultaten.

A considerable amount of time during my stay in Twente was spent on the attempt to
witness Macroscopic Quantum Tunnelling (MQT) in our YBCO/Nb ramp-type Josephson
junctions. Though the results obtained in these experiments were not substantial enough
for publication in this thesis, I would like to thank the people that have collaborated on
this project. My gratitude goes to Thilo Bauch for performing the switching experiments
on our samples in his dilution refrigerator at Chalmers University of Technology (Sweden).
Takeo è tò Kato (University of Tokyo, Japan) I owe thanks for discussions about MQT
in general and his support for writing a program to numerically calculate the crossover-
temperature. I would also like to thank Shiro Kawabata (National Institute of Advanced
Industrial Science and Technology, Japan) for the many stimulating discussions.

Zoals gezegd heb ik mijn periode bij de vakgroep Lage Temperaturen als bijzonder
aangenaam ervaren. Graag wil ik in dit verband nog enkele mensen noemen. Om alle
zaken waarvoor ik Ans Veenstra en Inke in de Wal dankbaar ben te benoemen zou ik
minstens een extra appendix nodig hebben, dus ik beperk mij tot een kleine greep. Dank
voor de hulp bij het organiseren van reizen en hotels, voor al die administratieve klusjes,
en voor de gezellige gesprekken waar ik bij jullie nog wél begrip vond (mijn agenda-tik,
kamperen, fietsuitjes). Mijn dank gaat ook uit naar Frank Roest- en Dick Veldhuis, die
eigenlijk altijd in één adem genoemd worden (vinden jullie dat nou niet vervelend?):
bedankt voor alles wat jullie me geleerd hebben op het gebied van pulsed laser depositie,
sputteren, etsen, lithografie, en al die andere zaken die zoal bij samplefabricage komen
kijken. Ik heb ook erg genoten van de gezellige gesprekken aan de koffietafel die soms
helemaal nergens over gingen.

Dat laatste lijkt mij een mooi bruggetje naar Harry Steffens en Jan Talman. Een
Brabander heeft van nature sterk de neiging om te willen ’ouwehoeren’, en het is dan ook
wonderbaarlijk om te zien hoe bij rasechte Tukkers zoals Harry en Jan in die behoefte kan
worden voorzien, waarvoor mijn dank! Het spreekt natuurlijk voor zich dat ik ook jullie
noeste arbeid doordeweeks én in het weekeinde om de heliumproductie op peil te houden
enorm heb gewaardeerd, alsmede de hulp met de flow-cryostaat. In het paragraafje, laat
ik het beleefd houden, ’medium aged’, mag natuurlijk ook ’Syboltosaurus’ Harkema niet
ontbreken. Sybolt, ik heb altijd enorm genoten van jouw scherpe opmerkingen aan de
koffietafel en tijdens de werkbesprekingen, waar je mij sterk deed denken aan die oude
mannetjes op het balkon bij de Muppet-show. Ook wil ik jou en Gerrit van Hummel
bedanken voor alle hulp bij de metingen met de röntgendiffractometer. Jullie technische
expertise is van onschatbare waarde geweest!

Graag wil ik Alexander Brinkman bedanken voor de theoretische discussies. Ik heb
het altijd erg prettig gevonden dat je, hoe druk je het ook had, voor een wetenschappelijk
probleem altijd tijd vrij wilde maken. Alexander (Sasha) Golubov wil ik in dit verband
ook graag bedanken. Hoewel ik geen directe professionele relatie had met Jaap Flokstra,
voelde ik mij altijd wel sterk bij hem betrokken, mede omdat onze kamer zich naast die
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van hem bevond en Jaaps dragende stem zich niet erg veel aantrekt van dunne wandjes.
Iets waarvan ik overigens zelf ook weer ben beschuldigd toen Sybolt mij op het gehoor
feilloos in een menigte mensen wist op te sporen tijdens een conferentie.

Gedurende mijn promotieperiode heb ik met verschillende collega’s en studenten het
kantoor gedeeld. Graag wil ik hier mijn kamergenoten bedanken voor de gezellige periode:
Joska Broekmaat, ondernemer in hart en nieren. Na je promotie heb je met een aantal
collega’s het bedrijf SolMateS opgericht. Ik wens je alle goeds toe om van dit bedrijf een
groot succes te maken. Agnès Roussy heb ik maar een korte periode mee mogen maken,
maar je was een kleurrijke toevoeging voor het kantoor. Je lerares Nederlands kan trots
op je zijn als je deze tekst na al die tijd nog begrijpt, maar ik vermoed dat Dick het voor
je zal vertalen. Vedran ’Linux’ Vonk wil ik graag bedanken voor de discussies over de
kristallografische eigenschappen van YBCO, en Aleksandar Andreski voor de discussies
over Josephson-structuren en beurskoersen. Menno Veldhorst moet ik complimenteren
met zijn immer netjes opgeruimde bureau. Veel succes met de gekuiste Andreev reflectie!
Tim Lammens (ook wel Lamme Tim of Timmay genoemd), Rob Bijman (bedankt voor
de cursus hakken), Sander Wenderich, en Marcel Hoek wil ik hier ook graag bedanken
voor het aangename gezelschap.

I would like to express my special thanks to Ari Ando, who tricked the whole group
into believing that he had only one name but exposed himself by labelling his sample
boxes with ’AA’. You have helped me from the start and taught me almost everything
I know about sample fabrication. It has been a real pleasure working with you and I
enjoyed our discussions both on-duty and off-duty. My gratitude also goes to Karthikeyan
Shunmugavel for explaining to me the finer details of Indian culture. Thank you for
teaching me the hard way that indeed what I had always considered as ’spicy food’ was,
in fact, not spicy at all. I would also like to say thanks to Kelvin Foo for teaching me
how to count (which I already forgot) and say ’Coca Cola’ (which I did not forget) in
Cantonese.

De juweeltjes in mijn werkdag waren vaak toch de lunches in de Bastille met het vaste
clubje Martin van Essen, Johannes ’de Koala’ Pleikies en Reinder Cuperus, waarvoor ik
jullie hier graag wil bedanken. Om met de laatste te beginnen: Reinder, ik zeg het niet
graag, maar voor een Fries ben je zwaar OK! Vooral het weglaten van nautische termen
tijdens het zeiluitje heeft je enorm in mijn achting doen stijgen. Bedankt ook voor je hulp
met programmeren in Matlab en zo’n beetje alles wat met enen en nullen werkt. Johannes
wil ik graag bedanken voor de vele discussies over onderwerpen als juncties en SQUIDs,
maar ook over films, politiek en Oost-Duitsland. Je onverstoorbare werkhouding heeft
altijd respect bij mij afgedwongen. Met Martin heb ik behalve interesses in onder andere
talen, schaken, mosterd, en (om maar eens wat te noemen) Ome Henk, ook een neiging
naar perfectionisme gemeen. De voorbeelden hiervan waren vaak een feest van herkenning
en werkten zo op de lachspieren dat ik hier met veel plezier aan terugdenk.

Verder gaat mijn dank uit naar alle overige medewerkers en studenten die samen voor
een fantastische sfeer hebben gezorgd: Aico ’ass-o-vision’ Troeman (bedankt voor je hulp
met de SSM metingen), Maarten ’gewoon GMR’ van Zalk (die ik langzaam heb zien
transformeren naar de koning van de practical jokes), Kristiaan Kuit (zonder jou zat ik
nu nog kleurcoderingen op weerstanden te ontcijferen), de ’2 Brothers on the 4th Floor’
Mark & Jeroen Huijben (bedankt voor de hulp in het lab en met LightWave en uiteraard
de discussies over games), Joost ’glovebox’ Beukers (de EuO koning), Martin Sobik, Theo
Thijssen, Pieter Lerou, Marcel ter Brake, Harry Holland, Johannes Burger, Robert-Jan
Meijer, Harald van Weeren, Hendrie Derking, Gerard Willering, Manon Kok, Peter Bosch,
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Diederik Jekel, Michelle Kruize, Thijs ’mijnenveger’ Veening , ’Taxi’ Bert Borger, Imdat
Yikilmaz, Robert van Tankeren en Ingrid Oomen: allen bedankt voor een onvergetelijke
tijd.

Ook buiten de Universiteit Twente ben ik dank verschuldigd aan mensen die mij op
verschillende manieren hebben bijgestaan. I would like to thank Adrian Lupaşcu (Insti-
tute of Quantum Computing, University of Waterloo, Canada) for helpful discussions and
proofreading the draft-version of my thesis. I wish you all the best in setting up your own
research group. Mijn oud-collega’s aan de Technische Universiteit Delft Benoit Witkamp
en Paul van Rossum wil ik graag bedanken voor het bemachtigen van artikelen die hier
lastig te verkrijgen waren. Ben wil ik bovendien bedanken voor zijn hulp met LabVIEW.
Voor de broodnodige ontspanning was ik altijd welkom aan de Haringvliet in Rotterdam:
ik wil hier graag Coen Gebuis, Albart ’vissen’ Grasman en Ben ’muntjes’ Feringa be-
danken voor de onvergetelijke kaartavonden. Ook mijn collega-’schnickelfilosofen’ Paul
van Rossum, Khoa Do, Iddo Heller en Joost Dijkers wil ik hartelijk danken voor het mij
aansmeren van de schoppenmiet. Op deze plaats wil ik ook Gerda van Tongeren bedanken
voor de dagelijkse support, de gezellige uurtjes online en de maffe mailtjes. Pieter Kramer
wil ik graag bedanken voor de discussies tijdens onze lange wandelingen. Dat er maar vele
mogen volgen! Tenslotte gaat mijn dank uit naar mijn familie die mij tijdens deze periode
altijd heeft gesteund en waar ik mij altijd welkom heb geweten. Mijn (groot)ouders wil
ik graag bedanken voor onvoorwaardelijke liefde die ik vanuit Steenbergen heb mogen
ontvangen. Ook mijn zus en zwager wil ik bedanken voor de gezellige weekeinden en veel
succes toewensen met het grootbrengen van mijn twee fantastische neefjes.

π
De π-faseverschuiving die verantwoordelijk is voor de spontaan gegenereerde halftallige
magnetische flux quanta loopt als rode draad door dit proefschrift. Het getal π bleek zich
tijdens mijn promotie echter ook op allerlei andere manieren te manifesteren. Het kantoor
dat ik betrok had het telefoonnummer 3014 (π). Het laboratorium met de bad-cryostaat
had als telefoonnummer π onafgerond (3141), het laboratorium met de flow-cryostaat had
als telefoonnummer π afgerond (3142), het telefoonnummer van de aangrenzende kamer
was 3122 (2+2=4), wat door elkaar gehusseld weer de code op de koffie-automaat was
voor café-au-lait met extra suiker (2123). Het telefoonnummer van de collega-promovendi
aan het einde van de gang kon ik pas onthouden toen ik mij realiseerde dat ook dat uit
π te herleiden was: 31415926. De reistijd Enschede-Roosendaal bedroeg volgens de NS
dienstregeling 3:14, de lunch kostte regelmatig 3.14 Euro, tijdens mijn promotie-onderzoek
leerde ik dat er ongeveer π·107 seconden in een jaar gaan en dat men voor een zachtgekookt
ei het water 3’14” moet laten koken.
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[84] A. Barone and G. Paternò, Physics and applications of the Josephson effect, John
Wiley & Sons (1982)

[85] J.E. Lenz, A review of magnetic sensors, Proceedings of the IEEE 78, 973 (1990)

[86] A. Troeman, NanoSQUID magnetometers and high resolution scanning SQUID mi-
croscopy, Ph.D. Thesis, University of Twente (2007)

[87] J. Clarke and A.I. Braginski, The SQUID handbook vol. I fundamentals and technol-
ogy of SQUIDs and SQUID systems, Wiley-VCH Verlag (2004)

[88] J. Clarke and A.I. Braginski, The SQUID handbook vol. II applications of SQUIDs
and SQUID systems, Wiley-VCH Verlag (2006)

[89] R. Kleiner, D. Koelle, F. Ludwig and J. Clarke, Superconducting quantum interfer-
ence devices: state of the art and applications, Proceedings of the IEEE 92, 1534
(2004)

[90] H. Itozaki, SQUID application research in Japan, Superconducting Science and Tech-
nology 16, 1340 (2003)

[91] C.D. Tesche and J. Clarke, DC SQUID: noise and optimization, Journal of Low
Temperature Physics 29, 301 (1977)
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STELLINGEN

Behorende bij het proefschrift

Fractional Flux Quanta in High-Tc/Low-Tc Superconducting Structures

1. Het gebruik van niet-genormaliseerde basisfuncties voor het beschrijven van
ordeparametersymmetrieën met mengvormen is als appels met peren vergelijken
(Hoofdstuk 3 van dit proefschrift)

2. De ordeparametersymmetrie van de cupraatsupergeleider YBa2Cu3O7−δ bevat
een s-wave component van tenminste 9% en bevat geen complexe mengvormen
(Hoofdstuk 5 van dit proefschrift)

3. Het toepassen van π-faseverschuivingen in supergeleidende digitale electronica
biedt significante voordelen voor de ontwerp-, realisatie- en operatiefase van
circuits
(Hoofdstuk 6 van dit proefschrift)

4. Een on-chip aandrijving en uitlezing van de flux-toestand in hoekjuncties is cru-
ciaal voor de integratie van dergelijke elementen in supergeleidende electronica
(Hoofdstuk 7 van dit proefschrift)

5. Een vrouw die door het glazen plafond wil breken kan maar beter de broek
aantrekken

6. Het advies “Luister niet naar andermans adviezen” is logischerwijs ongeldig

7. Dat duurzame energie tegenwoordig een hot topic is heeft niet zozeer te maken
met global warming maar veeleer met economische en politieke motieven

8. Het is niet een gebrek aan vertrouwen, maar juist een teveel aan vertrouwen
geweest dat heeft geleid tot de crisis in de bancaire sector

9. Ongewenste intimiteiten zijn altijd door tenminste één partij gewenst

10. Mensen die bewust niet aan hypes deelnemen baseren hun keuzes op de keuzes
van anderen en vertonen derhalve indirect alsnog kuddegedrag

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd door de
promotor, prof. dr. ir. J.W.M. Hilgenkamp

C.J.M. Verwijs
25 juni 2009


